
Machine Learning
Support Vector Machines



Topics of previous lectures

X Ingredients of Machine Learning

X Classification Basics

X Basic Linear Classifier

X K-Nearest Neighbours Classifier

X Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis
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Topics of today’s lecture

Convex Optimization

Support Vector Machine (SVM)

Hard-margin SVM

Soft-margin SVM
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Background for Constrained Optimization

Consider the following optimization problem

min
x,y

f(x, y)

subject to g(x, y) = c

form the Lagrange function (Lagragian):

Λ(x, y, λ) = f(x, y)− λ(g(x, y)− c)

where λ ∈ R is the Lagrange multiplier

Solve the unconstrained problem: ∇Λ(x, y, λ) = 0, which is
equivalent to

∇x,yΛ(x, y, λ) = ∇f(x, y)− λ∇g(x, y) = 0

∇λΛ(x, y, λ) = g(x, y)− c = 0
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Background for Constrained Optimization

The following optimization problem

min
x
f(x)

subject to gi(x) ≤ 0, ∀i = 1, . . . ,m

is known as the primal problem, corresponding to primal variables x.
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Background for Constrained Optimization

The following optimization problem

min
x
f(x)

subject to gi(x) ≤ 0, ∀i = 1, . . . ,m

is known as the primal problem, corresponding to primal variables x.
The associated Lagragian dual problem is given by

max
λ∈Rm

min
x∈Rd

Λ(x,λ)

subject to λ ≥ 0

where λ are the dual variables.
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Background for Convex Optimization

When f(·) is a convex function and the constraints form a convex set
in the primal problem, then we will call it a convex optimization
problem.

In this case, the optimal solution of the dual problem is the same as
the optimal solution of the primal problem (Karush–Kuhn–Tucker
(KKT) theorem).
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in the primal problem, then we will call it a convex optimization
problem.
In this case, the optimal solution of the dual problem is the same as
the optimal solution of the primal problem (Karush–Kuhn–Tucker
(KKT) theorem).

Definition (Convex set)

A set C is a convex set if ∀x, y ∈ C and ∀θ ∈ [0, 1], we have

θx+ (1− θ)y ∈ C

Definition (Convex function)

Let f : X → R be a function such that X is a convex set, then f is a
convex (concave) function if ∀x1,x2 ∈ X and ∀θ ∈ [0, 1], we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)
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Background for Convex Optimization

Theorem 1

Let f : Rn → R is differentiable, then f(x) is convex iff ∀x1,x2

f(x2) ≥ f(x1) +∇xf(x1)
T (x2 − x1).
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Background for Convex Optimization

Theorem 1

Let f : Rn → R is differentiable, then f(x) is convex iff ∀x1,x2

f(x2) ≥ f(x1) +∇xf(x1)
T (x2 − x1).

Theorem 2

Let f : Rn → R is twice differentiable, then f(x) is convex iff the Hesian
matrix ∇2

xf(x) is positive semidefinite.

Now let’s look at two well-known classes of convex optimization problems.
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Linear Programming

Consider the case when the objective function is linear

min
x∈Rd

cTx

subject to Ax ≤ b,

where A ∈ Rm×d, c ∈ Rd and b ∈ Rm
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Consider the case when the objective function is linear

min
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subject to Ax ≤ b,

where A ∈ Rm×d, c ∈ Rd and b ∈ Rm
The Lagragian will be

Λ(x,λ) = cTx + λT (Ax− b) = (c +ATλ)Tx− λTb,

where λ ∈ Rm is the vector of non-negative Lagrange multipliers.

∇xΛ(x,λ) = c +ATλ = 0

The dual Lagragian problem will be

max
λ∈Rm

−λTb

subject to c +ATλ = 0, λ ≥ 0
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Quadratic Programming

Consider the case when the objective function is quadratic

min
x∈Rd

1

2
xTQx + cTx

subject to Ax ≤ b,

where A ∈ Rm×d, c ∈ Rd, b ∈ Rm and Q ∈ Rd×d is positive definite.
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min
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1

2
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where A ∈ Rm×d, c ∈ Rd, b ∈ Rm and Q ∈ Rd×d is positive definite.
The Lagragian will be

Λ(x,λ) =
1

2
xTQx+cTx+λT (Ax−b) =

1

2
xTQx+(c+ATλ)Tx−λTb,

∇xΛ(x,λ) = Qx + (c +ATλ) = 0

x = −Q−1(c +ATλ)

The dual Lagragian problem will be

max
λ∈Rm

−1

2
(c +ATλ)TQ−1(c +ATλ)− λTb

subject to λ ≥ 0
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There are infinetely many separating classifiers
(decision boundaries) between linearly separable
classes. Which one is the best in your opinion?

On training data each is as good as any other

Support Vector Machine learns the separating line B.



Support Vector Machine (SVM)

Again a linear classification method

If the classes are linearly separable then SVM finds a separating model

In contrast to the perceptron, SVM chooses a particular one among
the many

SVM chooses the linear separating model which has the highest
margin - distance between the decision boundary and the closest
instance
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Calculating the margin
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What is the distance between origin and the
decision boundary for negatives?
‖w‖ · ‖x‖ = t−m⇒ ‖x‖ = t−m

‖w‖



Calculating the margin
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Key distances in SVM
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Key distances in SVM
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Since we are free to rescale t, w and m, it is
customary to choose m = 1.



Optimization task in SVM

Maximize the margin
1

‖w‖
such that

positives are at least by margin above the decision boundary:
w · xi ≥ t+ 1
negatives are at least by margin below the decision boundary:
w · xi ≤ t− 1

More conveniently and equivalently:

w∗, t∗ = argmin
w,t

1

2
‖w‖2

subject to yi(w · xi − t) ≥ 1, yi ∈ {−1, 1}, 1 ≤ i ≤ n
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Suppose yi(w · xi − t) = 1. What can we say about xi?



Hard-margin SVM

w∗, t∗ = argmin
w,t

1

2
‖w‖2

subject to yi(w · xi − t) ≥ 1, yi ∈ {−1, 1}, 1 ≤ i ≤ n

To solve this optimization problem, first let’s form the Lagrange function

Λ(w, t, α1, . . . , αn) =
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i=1

αiyi

)
+

n∑
i=1

αi

FAST Foundation SVM 9 November 2020 22 / 32



Gradients of the Lagragian

Λ(w, t, α1, . . . , αn) =
1

2
w ·w −w ·

( n∑
i=1

αiyixi

)
+ t
( n∑
i=1

αiyi

)
+

n∑
i=1

αi
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Plugging back into the Lagragian
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Applying KKT method on the Lagragian

Λ(α1, . . . , αn) = −1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj +

n∑
i=1

αi

α∗1, . . . , α
∗
n = argmax

α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj +

n∑
i=1

αi

subject to αi ≥ 0, i = 1, . . . , n and
n∑
i=1

αiyi = 0

This task can be solved by quadratic optimisation solvers as we will see
during the lab session.
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Summary of SVM optimization

w∗, t∗ = argmin
w,t

1

2
‖w‖2

subject to yi(w · xi − t) ≥ 1, yi ∈ {−1, 1}, i = 1, . . . , n
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We can solve the equivalent dual problem

α∗1, . . . , α
∗
n = argmax

α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj +

n∑
i=1

αi

subject to αi ≥ 0, i = 1, . . . , n and
n∑
i=1

αiyi = 0

From the result we can calculate:

w∗ =

n∑
i=1

α∗i yixi t∗ = w∗ · xi − yi,

where xi is a support vector and αi is its weight.
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Hard margin and soft margin SVM

This was a hard margin SVM – we assumed that the classes are
linearly separable

Soft margin SVM can tolerate margin errors: cases where an
instance is inside the margin or even at the wrong side of the decision
boundary

The idea is to introduce slack variables ξi ≥ 0, one for each instance,
measuring the amount of margin error (or equal to 0 if no error)
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Soft margin SVM

The task is the following:

w∗, t∗, ξ∗i = argmin
w,t,ξi

1

2
‖w‖2+C

n∑
i=1

ξi

subject to yi(w · xi − t) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . , n

Here C is a regularisation parameter:

Higher C means more penalty on margin errors
Lower C means less penalty on margin errors

Higher C usually results in more support vectors, hence C is a
complexity parameter
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Higher C usually results in more support vectors, hence C is a
complexity parameter
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Lagragian function

w∗, t∗, ξ∗i = argmin
w,t,ξi

1

2
‖w‖2+C

n∑
i=1

ξi

subject to yi(w · xi − t) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . , n

Λ(w, t, , ξi, αi, βi) =
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Summary of soft-margin SVM

w∗, t∗, ξ∗i = argmin
w,t,ξi

1

2
‖w‖2+C

n∑
i=1

ξi

subject to yi(w · xi − t) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . , n
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αiαjyiyjxi · xj +
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i=1
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subject to 0 ≤ αi≤ C, i = 1, . . . , n and
n∑
i=1

αiyi = 0

From the result we can calculate:

w∗ =
n∑
i=1

α∗i yixi t∗ = w∗ · xi − yi,

where xi is a support vector and αi is its weight.
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Soft-margin SVM

Pro: usually generalizes better than the other discussed linear methods
due to margin maximization

Pro: can be used with kernels (discussed soon)

Pro: works even if the classes are not linearly separable

Con: the fitted model depends on very few instances (support vectors) and
ignores the location of other points (as long as they are on the correct
side of the decision boundary)

Con: Works efficiently on relatively small datasets
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What have we learned today?

X Convex Optimization

X Support Vector Machine (SVM)

X Hard-margin SVM

X Soft-margin SVM
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