Machine Learning

Linear and Quadratic Discriminant Analysis

FAS I DISCOVERING
THE FUTURE



Topics of previous lectures

v" Ingredients of Machine Learning
v' Classification Basics

v" Basic Linear Classifier

v K-Nearest Neighbours Classifier
v Naive Bayes Classifier
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Topics of today's lecture

o Linear Discriminant Analysis (LDA)
@ Quadratic Discriminant Analysis (QDA)
@ Maximum Likelihood Estimation (MLE)
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Motivation for LDA and QDA

@ We can obtain an optimal classifier on training data, if we follow the
maximum a posteriori (MAP) decision rule

= f(x) =argmax P(Y = y|X =x) =

yeY
PX=x|Y =y) - P(Y =
— argmax LEX =XV =y)- PV =)
yeY P(X = X)

That is, predict the class that has the highest probability conditional
to the given feature values.

@ For 2 classes @ and &, for input x we would predict @ if
PY=6X=x)>PY =6X=x)

P =@|X=x) PX=xY=@)-PY=8)_,
PY=6|X=x) PX=x[Y=6)-PY=6)
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Motivation for LDA and QDA

@ In case of Naive Bayes, we assumed conditional independence of the
features given the label and obtained

g = argmax P(Y = y) HP(Xz =xY =v)
yeY im1
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Motivation for LDA and QDA

@ In case of Naive Bayes, we assumed conditional independence of the
features given the label and obtained

g = argmax P(Y HP X, =x;|Y =vy)
yeyY i=1
@ In case of LDA and QDA, we assume that P(X = x|Y = k) for each
class k is modeled as a multivariate Gaussian distribution with PDF
1

1 .
PX =x|Y =k) = WMEQJP( - §(X - Nk)Tzkl(X - “k))7

where d is the number of features, that is x € R?, p; € R? is the
mean vector and Xj;, € R%*? is the covariance matrix for class k.
From here on, we will denote

fe(x) =PX=x|Y =k) ppr=PY =k).
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Linear Discriminant Analysis (LDA)

1 1
fr(x ziexp(—f x—p) 'S (x—p )
0 = —mrgren( gl ) S )

In case of LDA, we further assume that the classes have a common
covariance matrix 3 = 3 Vk. When comparing two classes & and &,
we can look at the log-ratio to obtain the decision boundary between the

classes

o (2R -
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Linear Discriminant Analysis (LDA)

1 1
fu(x :7%})(_, x — ) By (x - p )
(09 = —mrsreon( = 50— ) B - )
In case of LDA, we further assume that the classes have a common
covariance matrix 3 = 3 Vk. When comparing two classes @ and &,
we can look at the log-ratio to obtain the decision boundary between the

classes
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Linear Discriminant Analysis (LDA)

1 1
ka=7€$p<— 2 EIX—H )
0 = mmren( 50— )T E - )
In case of LDA, we further assume that the classes have a common
covariance matrix 3 =¥ Vk. When comparing two classes @ and ©,
we can look at the log-ratio to obtain the decision boundary between the

classes

o6 (p = e =) =8 (12T )

= log fe(x) + logpe — (log fo(x) +log pg) = log (;28) + log (%) =
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Linear Discriminant Analysis (LDA)

1 1 Ty —1
765617(—7)(—# X(x—p )
(gt ) S )
In case of LDA, we further assume that the classes have a common
covariance matrix 3 = 3 Vk. When comparing two classes & and &,
we can look at the log-ratio to obtain the decision boundary between the
classes

fe(x) =

1 (P(YzGBIX:X)) g (M) _

PY =0X =x) fo(x) ps
= log fg(x) + log pe — (log fo(x) + logps) = log (;ggi) + log <§2> =
= log (gg) - %((X - N@)Tzil(x — pg) — (x— Ne)Tzil(X - Ne)) =
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Linear Discriminant Analysis (LDA)

o) = e 50 )T )

In case of LDA, we further assume that the classes have a common
covariance matrix 3 = 3 Vk. When comparing two classes @ and &,

we can look at the log-ratio to obtain the decision boundary between the
classes

log (i(Y =X = X)) ~ log (fea(x) -pea) _

(Y =0|X =x) fo(x)-ps
= log fo(x) + log pg — (log fo(x) + log pg) = log (;28) +log (i? i
= log (ﬁ) ; ((X — 1) TN x — pg) — (x — pg) ETH(x - “’9)) -

D 1 _ -
—log ( i) = 5 (tg + 1) I (g — po) + X D7 (g — pe) =0
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Linear Discriminant Analysis (LDA)

P 1 _ _

@ The above linear function is the decision boundary between classes &

and ©

@ For more than two classes, we can obtain the pairwise decision
boundaries similarly
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Linear Discriminant Analysis (LDA)

@ The MAP decision rule can be equivalently represented in terms of
the linear discriminant functions

_ 1 _
Sp(x) =x"2 py, — §NEE 'y + log pr.
so that

g = f(x) = argmax dx(x)
key
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Linear Discriminant Analysis (LDA)

@ The MAP decision rule can be equivalently represented in terms of
the linear discriminant functions

_ 1 _
Sp(x) =x"2 py, — §NEE 'y + log pr.

so that

g = f(x) = argmax dx(x)
key

@ In practice we don't know the parameters of the Normal distribution
and we need to estimate them using the training data:

N, . . .
e Pr = —k, where N is the number of class-k observations and IV is the

total number of observations

. 1 &
° EZN—KZ (Xi—ﬂk)(xi—ﬂk)T
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Quadratic Discriminant Analysis (QDA)

@ The assumption that the inputs of every class have the same
covariance X is quite restrictive
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Quadratic Discriminant Analysis (QDA)

@ The assumption that the inputs of every class have the same
covariance X is quite restrictive

@ In case of QDA, we also estimate X for each class, and get
quadratic discriminant functions

1 1 _
Or(x) = —ilog |35 — i(x — ) TE (x — ) + log pr =
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Quadratic Discriminant Analysis (QDA)

@ The assumption that the inputs of every class have the same
covariance X is quite restrictive

@ In case of QDA, we also estimate X for each class, and get
quadratic discriminant functions

1 1 _
Or(x) = 5 log | X | — §(X — ) TS (x — ) + log pr =

1 1 _ _ 1 _
= —5 log 3| - 5#;‘52;@ Y+ xS ey, - §XT2k 'x +log pi
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Quadratic Discriminant Analysis (QDA)

@ The assumption that the inputs of every class have the same
covariance X is quite restrictive

@ In case of QDA, we also estimate X for each class, and get
quadratic discriminant functions

1 1 _
O (x) = —5 log |Zk| — S(x — ) S (x = ) + log py, =
1 1 _ _ 1 _

= —5 log 3| - 5#;‘52;@ Y+ xS ey, - §XT2k 'x +log pi

@ The decision boundary between each pair of classes @ and & is
described by a quadratic equation {x : dg(x) = 05 (x)}
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Quadratic Discriminant Analysis (QDA)

@ The assumption that the inputs of every class have the same
covariance X is quite restrictive

@ In case of QDA, we also estimate X for each class, and get
quadratic discriminant functions

1 1 _
Or(x) = 5 log | X | — §(X — ) TS (x — ) + log pr =

1 1 _ _ 1 _
= —5 log 3| - 5#;‘52;@ Y+ xS ey, - §XTZk 'x +log pi
@ The decision boundary between each pair of classes @ and & is
described by a quadratic equation {x : dg(x) = dg(x)}

@ The estimates for QDA are similar to those for LDA, except that
separate covariance matrices must be estimated for each class.
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LDA and QDA

Pro: Provides fast classification and is easy to implement
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LDA and QDA

Pro: Provides fast classification and is easy to implement

Pro: LDA & QDA are often preferred when there are more than 2 labels to
predict
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Pro: Provides fast classification and is easy to implement

Pro: LDA & QDA are often preferred when there are more than 2 labels to
predict

Con: The normality assumption may not hold in our data
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Pro:
Pro:

Con:
Con:

Provides fast classification and is easy to implement

LDA & QDA are often preferred when there are more than 2 labels to
predict

The normality assumption may not hold in our data

Sensitive to class imbalance.
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Population vs Sample

Population
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Maximum Likelihood Estimation (MLE)

Definition (Likelihood function)

Let f(x1,...,2,;0), @ € R¥ be the joint PMF or PDF of random
variables X7, ..., X,, with sample values z1,...,x,. The likelihood
function of the sample is given by

L(e;l'l,...,l'n) :L(e) =f($1,...,$n;0)

If X1,...,X, are independent and identically distributed (i.i.d.)
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Maximum Likelihood Estimation (MLE)

Definition (Likelihood function)

Let f(x1,...,2,;0), @ € R¥ be the joint PMF or PDF of random
variables X7, ..., X,, with sample values z1,...,x,. The likelihood
function of the sample is given by

L(e;l'l,...,l'n) :L(e) :f(l'l,...,llj'n;e)

If X1,...,X, are independent and identically distributed (i.i.d.)
e discrete random variable with PMF p(z, 8), then

L(O) =P(X) =x1,..., X, = 1) HP = [[»(z:0)
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Maximum Likelihood Estimation (MLE)

Definition (Likelihood function)

Let f(x1,...,2,;0), @ € R¥ be the joint PMF or PDF of random
variables X7, ..., X,, with sample values z1,...,x,. The likelihood
function of the sample is given by

L(e;l'l,...,l'n) :L(e) :f(l'l,...,llj'n;e)

If X1,...,X, are independent and identically distributed (i.i.d.)
e discrete random variable with PMF p(z, 8), then

L(O) =P(X) =x1,..., X, = 1) HP = [[»(z:0)

@ continuous r.v. with density f(z,8), then similarly

n

L(9) = [ [ f(x:,6)

i=1
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Maximum Likelihood Estimation (MLE)

Definition (Maximum Likelihood Estimators)

The maximum likelihood estimators (MLEs) are those values of the
parameters that maximize the likelihood function with respect to the
parameter . That is,

0 = argmax L(0; x1,...,x,)
7]

Maximum likelihood estimates give the parameter values for which the
observed sample is most likely to have been generated.
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@ Suppose the data x1,xa, ..., T, is drawn independently from a
normal distribution N(y, %) with unknown p and o
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@ Suppose the data x1,xa, ..., T, is drawn independently from a
normal distribution N(y, %) with unknown p and o

@ We want to estimate these unknown parameters from the data
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@ Suppose the data x1,x2,...,Z, is drawn independently from a
normal distribution N (p, o?) with unknown p and o

@ We want to estimate these unknown parameters from the data

@ For which values of i and o it is most likely that our data comes
from the corresponding normal distribution?

n 2
1 _(=@i—p)
f,0 = argmax L(p,0) = | | f(ai;p,0) = | | e T =

o

= (7)o (

5
|

=
N—

@
Il
=

(2

202
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@ Suppose the data x1,x2,...,Z, is drawn independently from a
normal distribution N (p, o) with unknown p and o

@ We want to estimate these unknown parameters from the data
@ For which values of i and o it is most likely that our data comes
from the corresponding normal distribution?

n n

(1,6 = argmax L(u, o) = T, O) =
i gmax L4, 0) iHlf(zu =11 7=

i=1
n " (z; — p)?
() oo (- )

We can obtain a more convenient, but equivalent optimization
problem if we consider the log likelihood function

1 _@i=w?
e 202 =
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@ Suppose the data x1, xa,...,x, is drawn independently from a
normal distribution N(y,?) with unknown p and o

@ We want to estimate these unknown parameters from the data

@ For which values of i and o it is most likely that our data comes
from the corresponding normal distribution?

n n

1 _i-w?
f,0 = argmax L(u,0) = | | f(zi;p,0) = e 22 =
it =115

:(\/2177m> exp(—;( 2(72“))

We can obtain a more convenient, but equivalent optimization
problem if we consider the log likelihood function

n L 2
fi,& = argmaxlog L(y1, o) = —nlog(v/21) —nlog(o) — Z (%22'@
o =1 7

FAST Foundation
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2

/:L, (} = argmaxlog L(/_,L’ 0’) = —n log(\/ 27{') —_ nlog(o—) — Z M
s ; 20

@
Il
_

How can we find the optimal values i, 67
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n

2
i, = argmaxlog L(u, o) = —nlog(v2m) — nlog(o) — Z (%22#)
i i=1 g

How can we find the optimal values [, 57

dlog L(p,0)
ou N
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fi,0 = argmaxlog L(u,0) = —nlog(v2r) — nlog(o) — Z
1,0 :

How can we find the optimal values i, 57

0log L(p,0) <~ Ti— i
o _Z
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fi,0 = argmaxlog L(u,0) = —nlog(v2r) — nlog(o) — Z
1,0 :

How can we find the optimal values i, 57

Olog L(p,0) <= i — -
T:Z 5 =0=) zi=m=

i=1 i=1
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Y
fi,0 = argmaxlog L(u,0) = —nlog(v2r) — nlog(o) — Z M
o .

How can we find the optimal values i, 57

alogLN? Zn:xl M:0:>i$i:n/ﬁ:>ﬂ:iixi
— i=

=1
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N2
fi,0 = argmaxlog L(u, o) = —nlog(v27) — nlog(o) — Z M
1,0 °

How can we find the optimal values fi,57

n

0log L(p, o) T — [ - 1 o
g T2 S0 m=msi=0) @
i=1 i=1 i=1

dlog L(p,0)
do a
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n 2

i, = argmaxlog L(u, o) = —nlog(v2m) — nlog(o) — Z (%22#)
i i=1 g

How can we find the optimal values [i,57

szixi;M:0:>Z$i:nu:>ﬂ:ini

o
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n L 2
fi,6 = argmax log L(u, o) = —nlog(v/2m) — nlog(o) — Z (=i —p)”

202
i i=1

How can we find the optimal values [i,57

dlog L(p, o) z":xi—u 0;\’271: Ny 12”:
Op i=1 o2 i=1 Z e i Z

dlog L(p, o o 1 ~\2

i) S5 g gt LS
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fi,0 = argmaxlog L(u,0) = —nlog(v2r) — nlog(o) — Z (%22”)
i i=1 g
How can we find the optimal values [i,57
0log L(u, "z - R
g N Z ¢ M:0:>Zl’z':n,u$ﬂ:;zxi
=1 =1 =1
dlog L(pu, o o1 - ~\2
Do)ty i 00t 1S e
=1 =1
In statistical terms, we call i and & point estimators or statistics. J

FAST Foundation LDA and QDA 26 October 2020 15/19



Properties of Estimators

Definition (Point Estimator)

Let 1, x9,...,x, be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

~

ézen:g(azl,mQ,...,wn)
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Properties of Estimators

Definition (Point Estimator)

Let 1, x9,...,x, be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

~

éz@n:g(azl,xg,...,xn)

Since the data is drawn from a random process, any function of the data is
random. Therefore 0 is a random variable.
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Properties of Estimators

Definition (Point Estimator)

Let 1, x9,...,x, be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

éz@n:g(xl,xg,...,xn)

Since the data is drawn from a random process, any function of the data is
random. Therefore # is a random variable.

Definition (Bias)

The bias of an estimator is defined as

A~

bias(0,) = E(6y,) — 0,

where the expectation is taken over the data and 6 is the true underlying
value used to define the data-generating distribution.

v
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Properties of Estimators

Definition (Unbiased Estimator)

An estimator 6, is said to be unbiased if bias(f,) = 0, which implies that

~

E(6,) = 6.

FAST Foundation LDA and QDA 26 October 2020 17 /19



Properties of Estimators

Definition (Unbiased Estimator)

An estimator 6, is said to be unbiased if bias(6,) = 0, which implies that

~

E(6,) = 6.

v

Definition (Asymptotically Unbiased)

An estimator 6, is said to be asymptotically unbiased if

~ ~

lim bias(6y,) = 0, which implies that li_)m E(6,) = 0.

n—oo
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Properties of Estimators

Definition (Unbiased Estimator)

An estimator 6, is said to be unbiased if bias(6,) = 0, which implies that

E(d,) = 6.

Definition (Asymptotically Unbiased)

An estimator 6,, is said to be asymptotically unbiased if

lim bias(0,) = 0, which implies that ILm E(f,) = 0.

n—oo

A

Definition (Consistency)

An estimator is weak consistent, if én 50 n— ooand
. . A a.s.
strong consistent, if 6, = 0 n — oo.

v
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
T %N(/L,O'Q), 1=1,...,n, then

bias(jin) = E(fin) — 1 =
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
-%N(M, 2, i=1,...,n, then

n

3\*—‘

bias(jin) = Eliin) — 11 = B(

)

=1
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
X %ZN(M,O'2), i=1,...,n, then

bias(fin) :E(ﬂn)_N:E<;Zwi) —p==Y B(mi)—p=p—p=
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
T; %N(u,0'2), 1=1,...,n, then

’ X . 1 n 1 n
bias(fin) = E(fin) — p = E(ﬁzxi) —p==) E(@) —p=p—p=0
i—1 i=1

The sample variance of a Gaussian distribution is biased, because

bias(6%) = E(62) — o2
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
X %N(u,az), i=1,...,n, then

' R . 1 n 1 n
bias(fin) = E(fin) — ZE(ngi) —p== E@) —p=p—p=0
i=1 i=1

The sample variance of a Gaussian distribution is biased, because

bias(6%) = E(62) — o2

n n
1 n
A2\ a2
E(57) = B(S Y (@i — in)?) =
n -
=1
FAST Foundation LDA and QDA
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
itd

z; ~ N(u,0%), i=1,...,n, then

bias(fin) = E(fin) — p ZE(%Z%) —p= %ZE(%) —p=p—p=0
=1 i=1

The sample variance of a Gaussian distribution is biased, because

bias(62) = E(62) — o
1< n—1 ,
= — it!
(n Z ) —0 (show it!) =
i=1
FAST Foundation LDA and QDA
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
-%N(u, %), i=1,...,n, then

biaS(ﬂn)zE(ﬂn)—u:E(lz ) p=— ZE% —p=p—p=0

=1
The sample variance of a Gaussian distribution is biased, because

bias(62) = B(62) — o>

- —1
( Z — fin) ) = o?(show it!) =

-1 2

=bias(62) o - o2 —o?=-T
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The MLE estimator of the Gaussian mean parameter is unbiased. Suppose
X %N(u,az), i=1,...,n, then

n n
bias(fin) = E(fin) — p :E<%Z$z) —p= %ZE(%) —p=p—p=0
i=1 i=1

The sample variance of a Gaussian distribution is biased, because

bias(62) = E(62) — o>

1 o -1
E(62) = IE(— 3 (i - gn)2) = 72 52 (show it!) =
n n
i=1
n—1 2
=bias(62) = o?—o?2=-2
n
The unbiased sample variance estimator is
1 n
£ N2
n_lz(l'i_,un) .
i=1
FAST Foundation LDA and QDA
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What have we learned today?

v Linear Discriminant Analysis (LDA)
v" Quadratic Discriminant Analysis (QDA)
v Maximum Likelihood Estimation (MLE)
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