
Machine Learning
Linear and Quadratic Discriminant Analysis



Topics of previous lectures

X Ingredients of Machine Learning

X Classification Basics

X Basic Linear Classifier

X K-Nearest Neighbours Classifier

X Naive Bayes Classifier
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Topics of today’s lecture

Linear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis (QDA)

Maximum Likelihood Estimation (MLE)
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Motivation for LDA and QDA

We can obtain an optimal classifier on training data, if we follow the
maximum a posteriori (MAP) decision rule

ŷ = f(x) = argmax
y∈Y

P (Y = y|X = x) =

= argmax
y∈Y

P (X = x|Y = y) · P (Y = y)

P (X = x)

That is, predict the class that has the highest probability conditional
to the given feature values.

For 2 classes ⊕ and 	, for input x we would predict ⊕ if

P (Y = ⊕|X = x) > P (Y = 	|X = x)

P (Y = ⊕|X = x)

P (Y = 	|X = x)
=
P (X = x|Y = ⊕) · P (Y = ⊕)

P (X = x|Y = 	) · P (Y = 	)
> 1
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Motivation for LDA and QDA

In case of Naive Bayes, we assumed conditional independence of the
features given the label and obtained

ŷ = argmax
y∈Y

P (Y = y)

m∏
i=1

P (Xi = xi|Y = y)

In case of LDA and QDA, we assume that P (X = x|Y = k) for each
class k is modeled as a multivariate Gaussian distribution with PDF

P (X = x|Y = k) =
1√

(2π)d|Σk|
exp
(
− 1

2
(x− µk)

TΣ−1k (x− µk)
)
,

where d is the number of features, that is x ∈ Rd, µk ∈ Rd is the
mean vector and Σk ∈ Rd×d is the covariance matrix for class k.
From here on, we will denote

fk(x) := P (X = x|Y = k) pk = P (Y = k).
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ŷ = argmax
y∈Y

P (Y = y)

m∏
i=1

P (Xi = xi|Y = y)

In case of LDA and QDA, we assume that P (X = x|Y = k) for each
class k is modeled as a multivariate Gaussian distribution with PDF

P (X = x|Y = k) =
1√

(2π)d|Σk|
exp
(
− 1

2
(x− µk)

TΣ−1k (x− µk)
)
,

where d is the number of features, that is x ∈ Rd, µk ∈ Rd is the
mean vector and Σk ∈ Rd×d is the covariance matrix for class k.
From here on, we will denote

fk(x) := P (X = x|Y = k) pk = P (Y = k).

FAST Foundation LDA and QDA 26 October 2020 5 / 19



Linear Discriminant Analysis (LDA)

fk(x) =
1√

(2π)d|Σk|
exp
(
− 1

2
(x− µk)

TΣ−1k (x− µk)
)

In case of LDA, we further assume that the classes have a common
covariance matrix Σk = Σ ∀k. When comparing two classes ⊕ and 	,
we can look at the log-ratio to obtain the decision boundary between the
classes

log
(P (Y = ⊕|X = x)

P (Y = 	|X = x)

)
=
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Linear Discriminant Analysis (LDA)

log
(p⊕
p	

)
− 1

2
(µ⊕ + µ	)TΣ−1(µ⊕ − µ	) + xTΣ−1(µ⊕ − µ	) = 0

The above linear function is the decision boundary between classes ⊕
and 	
For more than two classes, we can obtain the pairwise decision
boundaries similarly
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Linear Discriminant Analysis (LDA)

The MAP decision rule can be equivalently represented in terms of
the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log pk,

so that
ŷ = f(x) = argmax

k∈Y
δk(x)

In practice we don’t know the parameters of the Normal distribution
and we need to estimate them using the training data:

p̂k =
Nk

N
, where Nk is the number of class-k observations and N is the

total number of observations

µ̂k =
1

Nk

∑
i:Y=k

xi

Σ̂ =
1

N −K

K∑
k=1

∑
i:Y=k

(xi − µ̂k)(xi − µ̂k)
T
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ŷ = f(x) = argmax

k∈Y
δk(x)

In practice we don’t know the parameters of the Normal distribution
and we need to estimate them using the training data:

p̂k =
Nk

N
, where Nk is the number of class-k observations and N is the

total number of observations

µ̂k =
1

Nk

∑
i:Y=k

xi

Σ̂ =
1

N −K

K∑
k=1

∑
i:Y=k

(xi − µ̂k)(xi − µ̂k)
T

FAST Foundation LDA and QDA 26 October 2020 8 / 19



Quadratic Discriminant Analysis (QDA)

The assumption that the inputs of every class have the same
covariance Σ is quite restrictive

In case of QDA, we also estimate Σk for each class, and get
quadratic discriminant functions

δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1k (x− µk) + log pk =

The decision boundary between each pair of classes ⊕ and 	 is
described by a quadratic equation {x : δ⊕(x) = δ	(x)}
The estimates for QDA are similar to those for LDA, except that
separate covariance matrices must be estimated for each class.
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LDA and QDA

Pro: Provides fast classification and is easy to implement

Pro: LDA & QDA are often preferred when there are more than 2 labels to
predict

Con: The normality assumption may not hold in our data

Con: Sensitive to class imbalance.
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Population vs Sample
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Maximum Likelihood Estimation (MLE)

Definition (Likelihood function)

Let f(x1, . . . , xn; θ), θ ∈ Rk be the joint PMF or PDF of random
variables X1, . . . , Xn with sample values x1, . . . , xn. The likelihood
function of the sample is given by

L(θ;x1, . . . , xn) = L(θ) = f(x1, . . . , xn;θ)

If X1, . . . , Xn are independent and identically distributed (i.i.d.)

discrete random variable with PMF p(x,θ), then

L(θ) = P (X1 = x1, . . . , Xn = xn) =
n∏
i=1

P (Xi = xi) =
n∏
i=1

p(xi,θ)

continuous r.v. with density f(x,θ), then similarly

L(θ) =
n∏
i=1

f(xi,θ)
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Maximum Likelihood Estimation (MLE)

Definition (Maximum Likelihood Estimators)

The maximum likelihood estimators (MLEs) are those values of the
parameters that maximize the likelihood function with respect to the
parameter θ. That is,

θ̂ = argmax
θ

L(θ;x1, . . . , xn)

Maximum likelihood estimates give the parameter values for which the
observed sample is most likely to have been generated.
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Example

Suppose the data x1, x2, . . . , xn is drawn independently from a
normal distribution N(µ, σ2) with unknown µ and σ

We want to estimate these unknown parameters from the data

For which values of µ and σ it is most likely that our data comes
from the corresponding normal distribution?

µ̂, σ̂ = argmax
µ,σ

L(µ, σ) =
n∏
i=1

f(xi;µ, σ) = e−
(xi−µ)

2

2σ2 =
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Example
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∂ logL(µ, σ)

∂µ
=

n∑
i=1

xi − µ
σ2

= 0⇒
n∑
i=1

xi = nµ⇒ µ̂ =
1

n

n∑
i=1

xi

∂ logL(µ, σ)

∂σ
=
n

σ
+

n∑
i=1

(xi − µ)2

σ3
= 0⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2

In statistical terms, we call µ̂ and σ̂ point estimators or statistics.
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Properties of Estimators

Definition (Point Estimator)

Let x1, x2, . . . , xn be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

θ̂ = θ̂n = g(x1, x2, . . . , xn)

FAST Foundation LDA and QDA 26 October 2020 16 / 19



Properties of Estimators

Definition (Point Estimator)

Let x1, x2, . . . , xn be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

θ̂ = θ̂n = g(x1, x2, . . . , xn)

Since the data is drawn from a random process, any function of the data is
random. Therefore θ̂ is a random variable.

FAST Foundation LDA and QDA 26 October 2020 16 / 19



Properties of Estimators

Definition (Point Estimator)

Let x1, x2, . . . , xn be a set of i.i.d. data points. A point estimator or
statistic is any function of the data

θ̂ = θ̂n = g(x1, x2, . . . , xn)

Since the data is drawn from a random process, any function of the data is
random. Therefore θ̂ is a random variable.

Definition (Bias)

The bias of an estimator is defined as

bias(θ̂n) = E(θ̂n)− θ,

where the expectation is taken over the data and θ is the true underlying
value used to define the data-generating distribution.
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Properties of Estimators

Definition (Unbiased Estimator)

An estimator θ̂n is said to be unbiased if bias(θ̂n) = 0, which implies that
E(θ̂n) = θ.
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Definition (Unbiased Estimator)

An estimator θ̂n is said to be unbiased if bias(θ̂n) = 0, which implies that
E(θ̂n) = θ.

Definition (Asymptotically Unbiased)

An estimator θ̂n is said to be asymptotically unbiased if
lim
n→∞

bias(θ̂n) = 0, which implies that lim
n→∞

E(θ̂n) = θ.

Definition (Consistency)

An estimator is weak consistent, if θ̂n
p→ θ n→∞ and

strong consistent, if θ̂n
a.s.→ θ n→∞.
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Example

The MLE estimator of the Gaussian mean parameter is unbiased. Suppose

xi
iid∼ N(µ, σ2), i = 1, . . . , n, then

bias(µ̂n) = E(µ̂n)− µ =
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The sample variance of a Gaussian distribution is biased, because

bias(σ̂2n) = E(σ̂2n)− σ2
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E(σ̂2n) = E
( 1
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=
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n
σ2(show it!)⇒

⇒bias(σ̂2n) =
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2
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The unbiased sample variance estimator is

1

n− 1

n∑
i=1

(xi − µ̂n)2.
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What have we learned today?

X Linear Discriminant Analysis (LDA)

X Quadratic Discriminant Analysis (QDA)

X Maximum Likelihood Estimation (MLE)
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