
Machine Learning
K-Nearest Neighbours and Naive Bayes



Topics of previous lectures

X Ingredients of Machine Learning

X Basics of Classification

X Basic Linear Classifier

FAST Foundation KNN and NB 23 October 2020 2 / 45



Topics of today’s lecture

Classifiers:

K-Nearest Neighbours

Naive Bayes
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Tennis dataset

Day Outlook Temp Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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https://www.kaggle.com/m1thr4nd1r/tennis/data
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D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

FAST Foundation KNN and NB 23 October 2020 5 / 45

Let’s leave these features out for
now:

Temp

Humidity

Wind



Tennis dataset

Day Outlook PlayTennis

D1 Sunny No

D2 Sunny No

D3 Overcast Yes

D4 Rain Yes

D5 Rain Yes

D6 Rain No

D7 Overcast Yes

D8 Sunny No

D9 Sunny Yes

D10 Rain Yes

D11 Sunny Yes

D12 Overcast Yes

D13 Overcast Yes

D14 Rain No
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Now consider the
classification task of
predicting label
PlayTennis from a
single feature
Outlook
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Now consider the
classification task of
predicting label
PlayTennis from a
single feature
Outlook

First, let’s sort the
rows by Outlook
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Can we apply some
learning algorithm
that we already know?
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Can we apply some
learning algorithm
that we already know?

No! Linear classifiers
need numeric
features! We must
transform the data
into numeric first!
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Is this a good
encoding?

0=Overcast

1=Sunny

2=Rain



Tennis dataset
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Is this a good
encoding?

0=Overcast

1=Sunny

2=Rain

No, it’s not a good encoding!
No combination of weights results in predicting
PlayTennis=Yes for Overcast and Rain and PlayTennis=No
for Sunny.
If the weight for Outlook is positive, then changing
Outlook from Overcast → Sunny → Rain increases the
total score (and if weight is negative then decreases).



Better encoding (1-hot encoding)

Day Outlook=Overcast Outlook=Rain Outlook=Sunny PlayTennis

D3 1 0 0 Yes

D7 1 0 0 Yes

D12 1 0 0 Yes

D13 1 0 0 Yes

D4 0 1 0 Yes

D5 0 1 0 Yes

D6 0 1 0 No

D10 0 1 0 Yes

D14 0 1 0 No

D1 0 0 1 No

D2 0 0 1 No

D8 0 0 1 No

D9 0 0 1 Yes

D11 0 0 1 Yes
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Now for linear models there would be
a separate weight for each value of
Outlook



One-hot encoding

One-hot encoding: Introduce a binary (1/0) variable for each possible
value of the categorical variable

Using one-hot encoding is a standard method of transforming a
nominal feature (unordered categorical feature) into numeric features

For ordinal features (ordered categorical features, e.g. grades) it can
also be used, but it would ignore the ordering
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Are the 2 classes linearly separable?

Day Outlook=Overcast Outlook=Rain Outlook=Sunny PlayTennis

D3 1 0 0 Yes

D7 1 0 0 Yes

D12 1 0 0 Yes

D13 1 0 0 Yes

D4 0 1 0 Yes

D5 0 1 0 Yes

D6 0 1 0 No

D10 0 1 0 Yes

D14 0 1 0 No

D1 0 0 1 No

D2 0 0 1 No

D8 0 0 1 No

D9 0 0 1 Yes

D11 0 0 1 Yes
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Not linearly separable!
For example, look at D6, D10
instances that have the same features
but belong to different classes.
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If Outlook=Rain,
what would you
predict?
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If Outlook=Rain,
what would you
predict?

If Outlook=Rain,
what would be the
probability of
PlayTennis=Yes?
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If Outlook=Rain,
what would you
predict?

If Outlook=Rain,
what would be the
probability of
PlayTennis=Yes?

What kind of
probability is it?
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If Outlook=Rain,
what would you
predict?

If Outlook=Rain,
what would be the
probability of
PlayTennis=Yes?

What kind of
probability is it?

Conditional Probability!



Conditional Probability

Day Outlook PlayTennis Day Outlook PlayTennis

D3 Overcast Yes D6 Rain No

D7 Overcast Yes D10 Rain Yes

D12 Overcast Yes D14 Rain No

D13 Overcast Yes D1 Sunny No

D4 Rain Yes D2 Sunny No

D5 Rain Yes D8 Sunny No

D9 Sunny Yes D11 Sunny Yes

Our intuition tells us to consider the following conditional probability.

P (PlayTennis = Y es|Outlook = Rain) =
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Conditional Probability
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5
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=
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Probabilistic Assumptions

In classification, it is typically assumed that:

There is some unknown process that creates labelled instances for us
Each instance is created independently from others, by the same
process
In statistical terms: we assume that the instances are i.i.d.
(independent and identically distributed)

In previous calculations we have assumed even more:

The sample space (set of all possible outcomes) is the given dataset
In other words, the process which creates instances is just selecting a
random row from the given dataset

Under these assumptions we can calculate probabilities by counting
the proportion of instances that satisfy the respective condition
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Is there a classifier
that is always correct
on this dataset?



Optimal classifier on training data?

The perfect classifier does not exist on Tennis dataset:
(x=Rain,y=Yes) and (x=Rain,y=No) are both in the data but any
classifier maps Rain to either Yes or No

Remember that classifier is just a function of features: ŷ = f(x)

Which is the optimal classifier on training data? In the sense that it
makes the fewest errors
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Optimal classifier on training data
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Optimal classifier on
these data:

f(Overcast) = Y es

f(Rain) = Y es

f(Sunny) = No



Optimal classifier on training data

In general, how to obtain the optimal classifier?

ŷ = f(x) =?

Proportion of rows with feature values x is:

P (X = x)

Among those, proportion of positives:

P (Y = ⊕|X = x)

Among those, proportion of negatives:

P (Y = 	|X = x)
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Optimal classifier on training data

If our model predicts positive: ŷ = f(x) = ⊕
Then it makes mistakes on the negatives:

P (Y = 	|X = x)

If our model predicts negative: ŷ = f(x) = 	
Then it makes mistakes on the positives:

P (Y = ⊕|X = x)

To minimize errors we should:

Predict ⊕ if P (Y = ⊕|X = x) > P (Y = 	|X = x)
Predict 	 if P (Y = 	|X = x) > P (Y = ⊕|X = x)
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Maximum a posteriori (MAP)

Optimal is to follow the maximum a posteriori (MAP) decision rule

ŷ = f(x) = argmax
y∈Y

P (Y = y|X = x)

That is, predict the class that has the highest probability conditional to
the given feature values
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Have we solved classification?

We have just found how to calculate the optimal classifier – have we
solved classification?

No! We made the assumption that instances are drawn randomly
from the training data

When testing our classifier on new test data, we might encounter a
different distribution of data and even new instances
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Bayes classifier

If we somehow magically know probabilities according to the true
process that generates instances, then MAP-decision rule gives us
Bayes classifier

Bayes classifier is defined by:

ŷ = f(x) = argmax
y∈Y

P (Y = y|X = x),

where P is the probability measure defined by the true
data-generating process
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Train and Test data

So far we have obtained the optimal classifier on our training data,
but having a good classifier on training data is not sufficient

The goal is to perform well on future data

How well would our classifier perform on future data?

We will never know exactly in advance, but we can estimate it by
applying the classifier on a test dataset, which is separate from the
training dataset

What if we don’t have test data?

We can still estimate how well our learning algorithm works by splitting
the original training data randomly into training and test data
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Random split into train and test sets

Day Outlook PlayTennis

D1 Sunny No

D2 Sunny No

D4 Rain Yes

D6 Rain No

D7 Overcast Yes

D12 Overcast Yes

D14 Rain No

D3 Overcast Yes

D5 Rain Yes

D8 Sunny No

D9 Sunny Yes

D10 Rain Yes

D11 Sunny Yes

D13 Overcast Yes
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Optimal classifier
on training data:
f(Overcast) = Y es
f(Rain) = No
f(Sunny) = No

Train-optimal classifier
makes 4 errors:
D5,D9,D10,D11



Bad performance on test data

Our train-optimal classifier had 4/7 error rate on the test data – why
so bad?

We might have been unlucky with how the training and test data were
split
The dataset is small - a bigger dataset might have allowed us to learn
more successfully
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Bad performance on test data

Our train-optimal classifier had 4/7 error rate on the test data – why
so bad?

We might have been unlucky with how the training and test data were
split
The dataset is small - a bigger dataset might have allowed us to learn
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We have 2 features now

Day Outlook Temp PlayTennis

D7 Overcast Cool Yes

D3 Overcast Hot Yes

D13 Overcast Hot Yes

D12 Overcast Mild Yes

D5 Rain Cool Yes

D6 Rain Cool No

D4 Rain Mild Yes

D10 Rain Mild Yes

D14 Rain Mild No

D9 Sunny Cool Yes

D1 Sunny Hot No

D2 Sunny Hot No

D8 Sunny Mild No

D11 Sunny Mild Yes
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Optimal classifier
on these data:
f(Overcast, Cool) = Y es
f(Overcast,Hot) = Y es
f(Overcast,Mild) = Y es
f(Rain,Cool) = Y es/No
f(Rain,Mild) = Y es
f(Sunny,Cool) = Y es
f(Sunny,Hot) = No
f(Sunny,Mild) = Y es/No
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Optimal classifier
on these data:
f(Overcast, Cool) = Y es
f(Overcast,Hot) = Y es
f(Overcast,Mild) = Y es
f(Rain,Cool) = Y es/No
f(Rain,Mild) = Y es
f(Sunny,Cool) = Y es
f(Sunny,Hot) = No
f(Sunny,Mild) = Y es/No

f(Rain,Hot) =?



Problem with train-optimal classifier

Our train-optimal classifer does not define what to predict for
f(Rain,Hot)

If an instance with these feature values occurs in future data then we
would need to predict randomly

The same problem gets worse with more features
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Tennis dataset with all 4 features

Day Outlook Temp Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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14 instances but 3× 3× 2× 2 = 36
different possible feature value
combinations:
{Overcast, Rain, Sunny} ×
{Cool,Hot,Mild} ×
{High,Normal}×{Strong,Weak}

Therefore, we would need to predict randomly on
most of the feature value combinations in the future



Give up exact feature combinations

We need to give up on expecting to see the same feature
combinations in train and test data

What to do if we have a test instance with an unseen feature
combination?

We will see two solutions soon:

K-Nearest Neighbours
Näıve Bayes
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Day Outlook Temp Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

Question

What would you predict for x = (Sunny,Hot,Normal, Strong)?
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1 Nearest Neighbour (1NN)

It is natural to hope that if two instances differ by only 1 feature then
they are very likely to belong to the same class

1 nearest neighbour algorithm (1NN):

For a given test instance x
Find the training instance xi that is nearest to x
Predict the label yi on that training instance

Need to define what we mean by ”nearest to”

For categorical features – we could find the instance with the most
shared feature values
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K-Nearest Neighbours (KNN)

Pros: One of the simplest learning methods, applies for both
categorical and numerical data

K - integer, usually an odd number (1, 3, 5, . . .)

Learning the model=Memorise training data

Applying the model on test data:
For each test instance:

Find the K closest training instances
Predict most frequent label (in classification) or average label (in
regression) among those K

Cons: hard to choose a good distance measure and many distance
calculations are required
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Example in 2D

Figure: Data points in 2D
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Example in 2D

Figure: Classification regions based on 1NN
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Example in 2D

Figure: Classification regions based on 5NN
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Well-known distance measures

For numeric vectors x = (x1, . . . , xm) and x′ = (x′1, . . . , x
′
m)

Euclidean distance: d(x,x′) =

√√√√ m∑
i=1

(xi − x′i)2

Manhattan distance: d(x,x′) =
m∑
i=1

|xi − x′i|

Correlation distance: d(x,x′) = 1− ρ(x,x′), where ρ(x,x′) is Pearson
correlation coefficient

For categorical vectors

Hamming distance: d(x,x′) =
m∑
i=1

1{xi 6=x′
i}, where 1{·} is the indicator

function.
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New Feature Combination

What to do if we have a test instance with an unseen feature
combination?

KNN provided one possible solution

Let us look for a probabilistic solution
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Revision

Conditional Probability: P (A|B) =
P (A,B)

P (B)

Chain rule: P (A,B) = P (A|B) · P (B) = P (B|A) · P (A)

Bayes’ rule: P (A|B) =
P (B|A)P (A)

P (B)

If A, B are independent (A ⊥ B), then
P (A,B) = P (A) · P (B) and P (A|B) = P (A), P (B|A) = P (B)
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Revision

Conditional Probability: P (A|B) =
P (A,B)

P (B)

Chain rule: P (A,B) = P (A|B) · P (B) = P (B|A) · P (A)

Bayes’ rule: P (A|B) =
P (B|A)P (A)

P (B)

If A, B are independent (A ⊥ B), then
P (A,B) = P (A) · P (B) and P (A|B) = P (A), P (B|A) = P (B)

Definition: Conditional independence

If A, B are conditionally independent given C (we will denote A ⊥ B|C),
then

P (A,B|C) = P (A|C) · P (B|C)

and
P (A|B,C) = P (A|C); P (B|A,C) = P (B|C)
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Näıve Bayes

Assume that any pair of features are conditionally independent given
the label:

Xi ⊥ Xj |Y, i 6= j

Then MAP decision rule gives us:

ŷ = f(x) = argmax
y∈Y

P (Y = y|X = x) =
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Näıve Bayes

Predict the class according to the following rule:

ŷ = f(x) = argmax
y∈Y

P (Y = y)

m∏
i=1

P (Xi = xi|Y = y)



Example

What would Näıve Bayes predict for x = (Sunny,Hot,Normal, Strong)?

Day Outlook Temp Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Example

What would Näıve Bayes predict for
x = (Sunny,Hot,Normal, Strong)?

P (Y = ⊕)

m∏
i=1

P (Xi = xi|Y = ⊕) =
9

14
· 2
9
· 2
9
· 6
9
· 3
9
=

4

567
≈ 0.007

P (Y = 	)
m∏
i=1

P (Xi = xi|Y = 	) =
5

14
· 3
5
· 2
5
· 1
5
· 3
5
=

9

875
≈ 0.01

Näıve Bayes predicts negative because:

P (Y = 	)
m∏
i=1

P (Xi = xi|Y = 	) > P (Y = ⊕)
m∏
i=1

P (Xi = xi|Y = ⊕)
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Laplace Smoothing

When calculating probabilities in

P (Y = y)

m∏
i=1

P (Xi = xi|Y = y)

any zero probability would make the total into zero also

Usually, Laplace smoothing is applied when calculating these

probabilities, so instead of dividing
a

b
, where a are favourable and b

are all options, in Laplace smoothing one would use the ratio
a+ 1

b+ 2
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Example with Laplace smoothing

What would Näıve Bayes predict for
x = (Sunny,Hot,Normal, Strong)?

P (Y = ⊕)

m∏
i=1

P (Xi = xi|Y = ⊕) =
10

16
· 3
11
· 3
11
· 7
11
· 4
11

=
315

29282
≈ 0.01

P (Y = 	)
m∏
i=1

P (Xi = xi|Y = 	) =
6

16
· 4
7
· 3
7
· 2
7
· 4
7
=

36

2401
≈ 0.015

Again, Näıve Bayes predicts negative because:

P (Y = 	)
m∏
i=1

P (Xi = xi|Y = 	) > P (Y = ⊕)
m∏
i=1

P (Xi = xi|Y = ⊕)
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Näıve Bayes

Pro: simple and takes into account the class prior

Con: assumes conditional independence of features given the label

Being ”Näıve” can be a good thing:

Occam’s razor (important guideline in machine learning)

Everything should be made as simple as possible, but not simpler.

FAST Foundation KNN and NB 23 October 2020 43 / 45
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What does ”Bayesian” mean?

It means that you have some prior belief about the probability of
some event(s) before observing the data

You update your belief according to the likelihood of new observations

In our case:

Prior belief was P (Y = y)
We observed X = x
Likelihood of observations: P (X = x|Y = y)
Posterior (updated) belief:
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What does ”Bayesian” mean?

It means that you have some prior belief about the probability of
some event(s) before observing the data

You update your belief according to the likelihood of new observations

In our case:

Prior belief was P (Y = y)
We observed X = x
Likelihood of observations: P (X = x|Y = y)
Posterior (updated) belief:

P (Y = y|X = x) =
P (Y = y) · P (X = x|Y = y)

P (X = x)
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What have we learned today?

Classifiers:

X K-Nearest Neighbours

X Naive Bayes
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