
Machine Learning
Kernel Methods and Decision Trees



Topics of previous lecture

X Ingredients of Machine Learning

X Classification Basics

X Basic Linear Classifier

X K-Nearest Neighbours Classifier

X Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis

X Support Vector Machines (SVM)
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Topics of today’s lecture

Kernel methods

No Free Lunch Theorem

Decision trees

Choosing the best split

Impurity measures

Decision Tree Learners

Pruning

Cross-Validation
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Motivation for Kernels

We know that KNN results in non-linear models (decision boundary is
not a straight line / hyperplane)

For example, KNN works very nicely on these data:
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It turns out that linear methods can also learn this
separation! How?



Non-linearity with linear models

Linear models are linear in the features

Let us construct new features that are nonlinear in the original
features

Linear models on the new features are nonlinear in the original
features!

This way we can fit non-linear models using linear model learning
algorithms e.g.

if the hidden dependency is y = x3 + 3x2 − x+ 7
Then if we introduce features x, x2, x3 then linear methods can learn
this functional dependency
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Non-linearity with linear models

Let’s construct new features to make data linearly separable:

φ : R2 → R3

(x1, x2)→ (z1, z2, z3) = (x21,
√
2x1x2, x

2
2)

FAST Foundation Kernel Methods and Decision Trees 16 November 2020 6 / 64



Non-linearity with linear models

Fitting:

Transform the training data through φ(x): x→ φ(x)
Learn a linear model

Predicting:

Transform the test data through φ(x): x→ φ(x)
Apply the fitted linear model

This can be very slow, if there are a lot of constructed features. Can
we make it faster?

Let’s see how φ(x) is used in SVM
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SVM on constructed features

Fitting (dual form soft-margin):
xi → φ(xi) for i = 1, . . . , n

α∗1, . . . , α
∗
n = argmax

α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjφ(xi) · φ(xj) +
n∑
i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n and
n∑
i=1

αiyi = 0

w∗ =

n∑
i=1

α∗i yiφ(xi) t∗ = w∗·φ(xj)−yj =
n∑
i=1

α∗i yiφ(xi)φ(xj)−yj

Prediction:
x→ φ(x)

ŷ = sign(w∗ · φ(xi)− t∗) = sign(
n∑
i=1

α∗i yiφ(xi) · φ(x)− t∗))
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Everything through dot products

In SVM fitting and prediction all uses of instances can be made
through dot products

Our example transformation:

φ : R2 → R3

(x1, x2)→ (z1, z2, z3) = (x21,
√
2x1x2, x

2
2)

Dot product:

φ(x) · φ(x′) = φ(x1, x2) · φ(x′1, x′2) =
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Kernel trick

We can now use the kernel trick!

Instead of

transforming the instances with x→ φ(x)
then fitting and predicting on the constructed higher-dimensional
instances φ(x)

We can now do the kernel trick:

Work with original instances
Use a modified method of calculating dot products x · x′ → κ(x,x′)
In our example the kernel is κ(x,x′) = (x · x′)2
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Kernel SVM

Fitting (soft-margin kernel SVM):

α∗1, . . . , α
∗
n = argmax

α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjκ(xi,xj) +

n∑
i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n and
n∑
i=1

αiyi = 0

t∗ =

n∑
i=1

α∗i yiκ(xi,xj)− yj ,

where xj is a support vector of class yj .

Prediction:

ŷ = sign
( n∑
i=1

α∗i yiκ(xi,x)− t∗
)
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When does the kernel trick work?

Can we choose any function for κ(x,x′)?

No! We can only choose kernels for which there exists some
transformation φ such that:

κ(x,x′) = φ(x) · φ(x′)

Otherwise the mathematics of SVM breaks down

Mercer’s theorem:
Such transformation φ exists if and only if κ(x,x′) is a positive
semi-definite function
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Positive semi-definiteness

Definition

Let κ : Rn × Rn → R, then function κ(x,x′) is positive semi-definite, if
for any x1, . . . ,xn the following matrix (kernel matrix) is positive
semi-definite: 

κ(x1,x1) κ(x1,x2) . . . κ(x1,xn)
κ(x2,x1) κ(x2,x2) . . . κ(x2,xn)

...
...

. . .
...

κ(xn,x1) κ(xn,x2) . . . κ(xn,xn)


Definition

A matrix M ∈ Rn×n is positive semi-definite, if for any vector x ∈ Rn

xTMx ≥ 0

Checking these criteria might be non-trivial, often new kernels are
constructed by combining existing ones
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Well-known kernels

Linear kernel (original space unchanged):

κ(x,x′) = x · x′

Polynomial kernel (for any γ, r ∈ R and d ∈ N):

κ(x,x′) = (γx · x′ + r)d

Gaussian kernel (also known as Radial Basis Function (RBF)) for any
σ > 0 (γ > 0):

κ(x,x′) = exp
(
− ‖x− x′‖2

2σ

)
= exp(−γ‖x− x′‖2)
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Polynomial kernel

For any γ, r ∈ R and d ∈ N:

κ(x,x′) = (γx · x′ + r)d

For example, take γ = r = 1 and d = 2 with 2 features:

κ(x,x′) = (x1x
′
1 + x2x

′
2 + 1)2 =

Constructs all polynomials of features x1, x2 up to d = 2 degree
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= (x21, x
2
2, 1,
√
2x1x2,

√
2x1,
√
2x2)·(x′1

2
, x′2

2
, 1,
√
2x′1x

′
2,
√
2x′1,
√
2x′2) =

= φ(x) · φ(x′)

Constructs all polynomials of features x1, x2 up to d = 2 degree
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Gaussian kernel

In case of Gaussian kernel the constructed feature space is
infinite-dimensional !!! E.g. for σ = 1 and x,x′ ∈ Rk

κ(x,x′) = exp
(
− ‖x− x′‖2

2

)
=
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Here the feature map is the following: φ(x) =
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Construction of kernels

If κ1, κ2 are kernels, a > 0 and f : X→ R then the following κ(x,x′) are
kernels as well:

κ(x,x′) = aκ1(x,x
′)

κ(x,x′) = κ1(x,x
′)κ2(x,x

′)

κ(x,x′) = κ1(x,x
′) + κ2(x,x

′)

κ(x,x′) = f(x)f(x′)
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Fundamental issue in ML

Learning theory claims that a machine learning algorithm can
generalize well from a finite training set of examples

Inductive reasoning (inferring general rules) from a limited set of
examples, is not logically valid

Machine learning promises to find rules that are probably correct
about most members of the set they concern
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Fundamental issue in ML

No training instance has exactly the same vector of feature values as
the test instance

Different methods approach this issue differently:

Näıve Bayes assumes independence of features
Distance-based and kernel methods assume that similar instances have
similar label values

Which is the best approach?

FAST Foundation Kernel Methods and Decision Trees 16 November 2020 19 / 64



Fundamental issue in ML

No training instance has exactly the same vector of feature values as
the test instance

Different methods approach this issue differently:
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No Free Lunch Theorem

One of the fundamental theorems on learning

Intuition behind NFL:

No learning algorithm works best for every problem
If training data covers a very small proportion of the instance space,
then on the rest of the instance space the ground truth might be
anything, unless we make additional assumptions
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Example

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Label

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 ???
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If the true function from features to
labels was fixed by coin tossing then
we cannot predict much better than
random



Example

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Label

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 ???

FAST Foundation Kernel Methods and Decision Trees 16 November 2020 21 / 64

If the true function from features to
labels was fixed by coin tossing then
we cannot predict much better than
random

We can predict a bit better than
random, if a small proportion of test
instances also belong to the training
set



More about NFL

For any learning algorithm there exist ”bad cases”, that is datasets
where the algorithm performs as bad or worse than random guessing

NFL for optimization:
– If an algorithm performs better than random guessing on some class
of problems then it will perform worse than random guessing on the
remaining problems.

The goal of ML is not to find a universal learning algorithm

The goal is to understand what kinds of distributions are relevant to
the ”real world” and what kinds of ML algorithms perform well on
data drawn from those data-generating distributions.
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How to overcome NFL?

Make assumptions about the domain!

We already know that different models make different assumptions

What do decision trees assume?

Decision trees assume that the instance space can be split into
segments such that all (or at least majority of) instances in the
segment belong to the same class
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Lenses dataset

Presbyopic Young Spectacle prescription Astigmatic Tear production rate Can use contact lenses
No Yes Myope No Normal Yes
No Yes Myope Yes Reduced No
No Yes Hypermetrope No Reduced No
No Yes Hypermetrope No Normal Yes
No No Myope No Reduced No
No No Myope No Normal Yes
No No Myope Yes Normal Yes
No No Hypermetrope No Reduced No
No No Hypermetrope Yes Reduced No
No No Hypermetrope Yes Normal No
Yes No Myope No Normal No
Yes No Hypermetrope Yes Normal No
No Yes Myope No Reduced ???
No Yes Myope Yes Normal ???
No Yes Hypermetrope Yes Reduced ???
No Yes Hypermetrope Yes Normal ???
No No Myope Yes Reduced ???
No No Hypermetrope No Normal ???
Yes No Myope No Reduced ???
Yes No Myope Yes Reduced ???
Yes No Myope Yes Normal ???
Yes No Hypermetrope No Reduced ???
Yes No Hypermetrope No Normal ???
Yes No Hypermetrope Yes Reduced ???
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This dataset is about 24 people who want to
start using contact lenses and visit the
optician (1 row=1 person)

https://archive.ics.uci.edu/ml/datasets/Lenses
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Optician gathers information (columns 1-5)
and decides if the person can use contact
lenses (last column)

https://archive.ics.uci.edu/ml/datasets/Lenses
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Lenses dataset

P Y H A R L

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 ???
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Lenses dataset

P Y H A R L

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 ???

What would you predict for the test instance?
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Lenses dataset

P Y H A R L

0 1 0 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 1 0 1 0

0 0 1 1 1 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

0 1 1 1 0 ???

First let’s consider only the last feature (R).
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How to predict?

R L

0 1

1 0

1 0

0 1

1 0

0 1

0 1

1 0

1 0

0 0

0 0

0 0

0 ???
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L=0 L=1 Majority

R=0 3 4 L=1

R=1 5 0 L=0

We agreed to predict the most frequent class
in the training data!

If R=0 then L=1
If R=1 then L=0
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Distribution

L=0 L=1 Majority

R=0 3 4 L=1

R=1 5 0 L=0

We agreed to predict the most frequent class
in the training data!

If R=0 then L=1
If R=1 then L=0

This is called a decision stump, that is a
decision tree with 1 decision node



How to predict in this case?

A R L

0 0 1

1 1 0

0 1 0

0 0 1

0 1 0

0 0 1

1 0 1

0 1 0

1 1 0

1 0 0

0 0 0

1 0 0

1 0 ???
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Distribution

L=0 L=1 Majority

A=0, R=0 1 3 L=1

A=0, R=1 3 0 L=0

A=1, R=0 2 1 L=0

A=1, R=1 2 0 L=0



How to predict in this case?
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Distribution

L=0 L=1 Majority

A=0, R=0 1 3 L=1

A=0, R=1 3 0 L=0

A=1, R=0 2 1 L=0

A=1, R=1 2 0 L=0

We agreed to predict the most frequent class
in the training data!

If A=0, R=0 then L=1
If A=0, R=1 then L=0
If A=1, R=0 then L=0
If A=1, R=1 then L=0



Decision Tree (features A, R)
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Decision Tree (features A, R)
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Decision Tree (features A, R)
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If A=0, R=0 then L=1
If A=0, R=1 then L=0
If A=1, R=0 then L=0
If A=1, R=1 then L=0

These decision trees are equivalent!



Question

Which of these decision trees are equivalent?
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Adding one more feature

H A R L

0 0 0 1

0 1 1 0

1 0 1 0

1 0 0 1

0 0 1 0

0 0 0 1

0 1 0 1

1 0 1 0

1 1 1 0

1 1 0 0

0 0 0 0

1 1 0 0

1 1 0 ???
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Distribution

L=0 L=1 Majority

H=0, A=0, R=0 1 2 L=1

H=0, A=0, R=1 1 0 L=0

H=0, A=1, R=0 0 1 L=1

H=0, A=1, R=1 1 0 L=0

H=1, A=0, R=0 0 1 L=1

H=1, A=0, R=1 2 0 L=0

H=1, A=1, R=0 2 0 L=0

H=1, A=1, R=1 1 0 L=0



Decision Tree (features H, A, R)
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L=0 L=1 Majority
H=0, A=0, R=0 1 2 L=1
H=0, A=0, R=1 1 0 L=0
H=0, A=1, R=0 0 1 L=1
H=0, A=1, R=1 1 0 L=0
H=1, A=0, R=0 0 1 L=1
H=1, A=0, R=1 2 0 L=0
H=1, A=1, R=0 2 0 L=0
H=1, A=1, R=1 1 0 L=0



Decision Tree (features H, A, R)
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Decision Tree (features H, A, R)
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L=0 L=1 Majority
H=0, A=0, R=0 1 2 L=1
H=0, A=0, R=1 1 0 L=0
H=0, A=1, R=0 0 1 L=1
H=0, A=1, R=1 1 0 L=0
H=1, A=0, R=0 0 1 L=1
H=1, A=0, R=1 2 0 L=0
H=1, A=1, R=0 2 0 L=0
H=1, A=1, R=1 1 0 L=0



Decision tree on all features?

P Y H A R L
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 1 0 0
1 0 0 0 0 0
1 0 1 1 0 0
0 1 1 1 0 ???
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Distribution

L=0 L=1
... ... ...

P=0, Y=1, H=1, A=0, R=1 1 0
P=0, Y=1, H=1, A=1, R=0 0 0

... ... ...



Decision tree on all features?
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Distribution

L=0 L=1
... ... ...

P=0, Y=1, H=1, A=0, R=1 1 0
P=0, Y=1, H=1, A=1, R=0 0 0

... ... ...

What to predict for this case?



Building a decision tree by recursively splitting the training
data

Let’s fix the order of decision nodes to be P, Y, H, A, R

Split by first feature P:

L=0 L=1 Pure?

P=0 6 4 No

P=1 2 0 Yes, L=0

P=1 is pure (all points belong to the same class), no need to split
further

Split P=0 by feature Y:

L=0 L=1 Pure?

P=0, Y=0 4 2 No

P=0, Y=1 2 2 No

P=1 2 0 Yes, L=0

Two new nodes are not pure, continue splitting

Split recursively P=0, Y=0 and P=0, Y=1 by H
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Building a decision tree by recursively splitting the training
data
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P Y H A R L
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 1 0 0
1 0 0 0 0 0
1 0 1 1 0 0
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Building a decision tree by recursively splitting the training
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Building a decision tree by recursively splitting the training
data

Predict for test instance P=0, Y=1, H=1, A=1, R=0:
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P Y H A R L
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0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 0
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Building a decision tree by recursively splitting the training
data

Predict for test instance P=0, Y=1, H=1, A=1, R=0: L=1
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Building a decision tree by recursively splitting the training
data (different fixed order: R, P, H, A, Y)
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Building a decision tree by recursively splitting the training
data (different fixed order: R, P, H, A, Y)

Predict for test instance P=0, Y=1, H=1, A=1, R=0:
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Building a decision tree by recursively splitting the training
data (different fixed order: R, P, H, A, Y)

Predict for test instance P=0, Y=1, H=1, A=1, R=0: L=0
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P Y H A R L
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 0
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Building a decision tree by recursively splitting the training
data (different fixed order: R, P, H, A, Y)

Predict for test instance P=0, Y=1, H=1, A=1, R=0: L=0

Different order of features resulted in a different tree and prediction
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P Y H A R L
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 1 0 0
1 0 0 0 0 0
1 0 1 1 0 0



Which decision tree is better?

Consider another test instance: P=0, Y=0, H=0, A=1, R=1

What do the 2 trees predict?

Decision tree from order P, Y, H, A, R:
Decision tree from order R, P, H, A, Y:

Which one would you believe?

Which one would you believe now?
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Which decision tree is better?

Consider another test instance: P=0, Y=0, H=0, A=1, R=1

What do the 2 trees predict?

Decision tree from order P, Y, H, A, R: L=1 (learned from 1 training
instance)
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Which one would you believe?
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Which decision tree is better?

Consider another test instance: P=0, Y=0, H=0, A=1, R=1

What do the 2 trees predict?

Decision tree from order P, Y, H, A, R: L=1 (learned from 1 training
instance)
Decision tree from order R, P, H, A, Y: L=0 (learned from 5 training
instance)

Which one would you believe?

Which one would you believe now?
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Which decision tree is better?

Consider another test instance: P=0, Y=0, H=0, A=1, R=1

What do the 2 trees predict?

Decision tree from order P, Y, H, A, R:
”I predict L=1 because the only training instance with
P=0,Y=0,H=0,A=1 (but R=0) had L=1”
Decision tree from order R, P, H, A, Y:
”I predict L=0 because all 5 training instances with R=1 always
had L=0”

Which one would you believe?

Which one would you believe now?
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Which decision tree is better?

Consider another test instance: P=0, Y=0, H=0, A=1, R=1

What do the 2 trees predict?

Decision tree from order P, Y, H, A, R:
”I predict it is ok for you to use contact lenses because optician
said ok to another person who was also prepresbyopic, myopic
and astigmatic except that unlike you he/she had normal tear
production rate”
Decision tree from order R, P, H, A, Y:
”I predict you should not use contact lenses because optician
suggested so to all 5 people with reduced tear production rate”

Which one would you believe?

Which one would you believe now?
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Which decision tree is better?

Usually, pure decision nodes covered by more training instances
predict better

Therefore, usually smaller trees are better, because on average, they
have higher coverage

Often it is better to stop splitting if the node becomes small (< 10 or
< 20 instances), even if the node is not yet pure
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How to order the features in splitting?

What is a good order?

Achieving purity sooner is better
Because then the tree would be smaller

How can we achieve purity sooner?

Choose the feature which increases purity the most

Therefore, we need to be able to measure purity
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Which split increases purity the most?
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Gini impurity of (N0, N1): Gini = 2p(1− p) where p =
N1

N0 +N1



Which split increases purity the most?
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Gini impurity of (N0, N1): Gini = 2p(1− p) where p =
N1

N0 +N1

p : 0.4 0 0.25 0.5 0.5 0.17 0.43 0.2 0.57 0



Which split increases purity the most?
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Gini impurity of (N0, N1): Gini = 2p(1− p) where p =
N1

N0 +N1
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p : 0.4 0 0.25 0.5 0.5 0.17 0.43 0.2 0.57 0

Gini : 0.48 0 0.38 0.5 0.5 0.28 0.49 0.32 0.49 0

AvgGini : 0.4 0.42 0.39 0.42 0.29

Average Gini impurity after split:

AvgGini =
SizeleftGinileft + SizerightGiniright

Sizeleft + Sizeright
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Entropy of (N0, N1): E = −p log2(p)− (1− p) log2(1− p) where p =
N1

N0 +N1

p : 0.4 0 0.25 0.5 0.5 0.17 0.43 0.2 0.57 0

E : 0.97 0 0.81 1 1 0.65 0.99 0.72 0.99 0

IG : 0.11 0.04 0.09 0.04 0.34

Information gain after split: IG = Eparent −
SizeleftEleft + SizerightEright

Sizeleft + Sizeright



Decision Tree Learning

Greedily recursively choosing best splits

FAST Foundation Kernel Methods and Decision Trees 16 November 2020 41 / 64



Choosing the best split

Which is the best feature to split on?

The one which minimizes the size of the tree
Cannot know the size without recursively building the tree
(this would be computationally very hard)

Intuitively, the splits which result in class distributions closer to purity
potentially lead to smaller trees

DT learners estimate how much purity improves (or how much
impurity is reduced) after the considered split
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Finding the best feature to split on
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Why these impurity measures?

What is the intuition behind these measures?

Guiding principles:

Maximize impurity gain:

Imp(D)− Imp({D1, . . . , Dl})

the overall impurity of child nodes should be maximally smaller than
the impurity of the parent D
Impurity of child nodes should depend on individual impurities
proportionally to their size:

Imp({D1, . . . , Dl}) =
l∑

j=1

|Dj |
|D|

Imp(Dj)
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More guiding principles

Impurity should be defined through the empirical class distribution in
the node: in binary classification through ṗ:

the proportion of positives, i.e. ṗ =
n⊕

n⊕ + n	

Impurity should be 0 (full purity) if ṗ = 0 or ṗ = 1

Impurity should remain the same if we swap the classes, i.e. we
replace ṗ by 1− ṗ
Impurity should be maximal if ṗ = 1

2

These are among the well known impurity measures:

Minority Class
Gini Index
Entropy
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Minority class

Minority class: min(ṗ, 1− ṗ)
Measures the proportion of misclassified instances if the leaf was
labelled with the majority class

Equivalently written as 1
2 − |ṗ−

1
2 |
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Gini Index

Gini index: 2ṗ(1− ṗ)
Measures the expected proportion of misclassified instances if the leaf
was labelled randomly: positive with probability ṗ and negative with
probability 1− ṗ
The probability of a false positive is then ṗ(1− ṗ) and the probability
of a false negative is (1− ṗ)ṗ
In case of multiclass classification (there are C classes) the formula is

Gini = 1−
C∑
i=1

p2i
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Entropy

Entropy: −ṗ log2 ṗ− (1− ṗ) log2(1− ṗ)
Measures the expected information, in bits, conveyed by somebody
telling you the class of a randomly drawn example

The purer the set of examples, the more predictable this message
becomes and the smaller the expected information

In case of multiclass classification (there are C classes) the formula is

Entropy = −
C∑
i=1

pi · log2 pi
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Impurity Functions
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Impurity Functions
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What is the best measure?



Impurity Functions
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What is the best measure? Depends on the data!



Decision tree learning algorithm

ID3: Iterative Dichotomizer 3

1. Start with a single node

2. Find the feature with the largest information gain

3. Split the node according to this feature

4. Repeat recursively on subnodes
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ID3 with categorical non-binary features

Apply ID3 as usual

When considering to split using a categorical feature with more than
2 values (non-binary):

1. Split into k subtrees (instead of just left and right)
2. Measure entropy in each subtree
3. Calculate information gain (average entropy per instance after splitting

vs before splitting)
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ID3 for multi-class classification

Multi-class classification: Label is categorical, with more than 2
values (classes)

Apply ID3 as usual

Formula for entropy for a node with counts (N1, N2, . . . , Nk):

E = −
k∑
i=1

pi log2(pi),

where pi =
Ni

N1 +N2 + . . .+Nk
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C4.5 - extension of ID3

C4.5

Supports continuous attributes
Considers all possible thresholds for splitting, for example age < 18;
weight < 100; height > 1.95

Supports missing values

Supports pruning
Pruning of a subtree means cancelling all its splits and keeping it as
one leaf node

There is also C5 algorithm with some improvements in speed and memory
usage.
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Pre-pruning

Pre-pruning means that during decision tree learning some nodes are
not split further

Decision not to split is typically made if one of the following
conditions hold:

Node size is below a threshold
One of the child nodes would have size below a threshold
Depth of the tree is above a threshold
Impurity gain is below a threshold
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Post-pruning

Post-pruning means that after the tree has been learned, some of the
subtrees are removed (replaced by their parent node)

Decision to prune usually done based on tree performance on a
hold-out dataset

Reduced-error pruning removes subtrees which perform worse than
majority class (within the respective parent node)
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Pre- or Post-pruning?

Generally good to do both

Pre-pruning is faster and does not need any extra data

Post-pruning is slower, needs extra data, but can ”undo” some of the
(potentially) bad greedy decisions made at the end of decision tree
learning
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How to overcome NFL?

Make assumptions about the domain!

We already know that different models make different assumptions

What do decision trees assume?

Decision trees assume that the instance space can be split into
segments such that all (or at least majority of) instances in the
segment belong to the same class
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Segments in decision trees

What is a segment in decision trees?

Segment:

Corresponds to a leaf in the decision tree
A logical conjunction (&) of terms
Each term compares a feature to a constant
Allowed comparison operators: =, 6=, <, ≤, >, ≥

Example: (L = 4)&(G = y)
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Why does a decision tree ”work”?

Why does a decision tree usually predict better than random?

Because real-life tasks have usually a structure that favours decision
tree learning

Decision trees have a practically useful inductive bias (set of
assumptions about the data) like the other popular learning algorithms
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Choosing hyper-parameter values

As we know already, in practice we hold out part of our training set
for testing purposes (test set)

Evaluating different values of a hyper-parameter and choosing the
optimal one on the test set, there is still a high chance of overfitting

To solve the latter we may hold out another part of our training set
as a validation set

Partitioning the available data into three sets reduces the number of
samples which can be used for learning the model

The results can depend on a particular random choice for the pair of
(train, validation) sets
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Choosing hyper-parameter values

FAST Foundation Kernel Methods and Decision Trees 16 November 2020 61 / 64



K-Fold Cross-Validation

Test set is still hold out for final evaluation

The training set is split into k smaller sets (folds)

For each k:

A model is trained using k − 1 of the folds as training data
the resulting model is validated on the remaining part of the data

Average over the k evaluations is considered as a result
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K-Fold Cross-Validation
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What have we learned today?

X Kernel Methods

X No Free Lunch Theorem

X Decision trees

X Choosing the best split

X Impurity measures

X Decision Tree Learners

X Pruning

X Cross-Validation
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