Machine Learning

Ensemble Methods
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THE FUTURE



Topics of previous lectures

Ingredients of Machine Learning
Classification Basics

Basic Linear Classifier

K-Nearest Neighbours Classifier

Naive Bayes Classifier

Linear and Quadratic Discriminant Analysis
Support Vector Machines (SVM)

Decision Trees

NN N YNNI NN
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Topics of today's lecture

o Bagging

@ Random Forest
o Weighted Voting
@ Stacking
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Motivation for Ensembles

In 1907, 787 villagers tried to guess the weight of ox
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Motivation for Ensembles

None of them guessed it correctly, but the average guess
(542.9 kg) was very close to actual weight of ox (543.4 kg)
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What are Ensemble Methods?

Definition 1
Combinations of different models are called ensembles.
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What are Ensemble Methods?

Definition 1
Combinations of different models are called ensembles.

Definition 2

Ensemble method is the one that makes predictions by aggregating
predictions from multiple models (ensemble).
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Aggregation of predictions

Model 1 Prediction 1
Prediction 2
Input o Aggregated
T Model 3 Prediction 3 Aggregator

prediction

Prediction m
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Aggregation of predictions

@ How to get multiple models? J
Model 1 Prediction 1
Prediction 2
Input o Aggregated
T Model 3 Prediction 3 Aggregator prediction
Prediction m
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Aggregation of predictions

@ How to get multiple models? J

@ How to aggregate the predictions?

Model 1 Prediction 1

Prediction 2

Input
instance

Aggregated

Model 3 prediction

Prediction 3 Aggregator

Model m Prediction m
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Voting in binary classification

Voter 1 Vote 1

Vote 2

Which
class has Aggregated
more prediction

votes?

Input

: Vote 3
instance

Voter 3

Voter m Vote m
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Theory for voting (binary task)

@ Originates from Marquis de Condorcet 1785:
"Essay on the Application of Analysis to the Probability of Majority
Decisions”
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Theory for voting (binary task)

@ Originates from Marquis de Condorcet 1785:
"Essay on the Application of Analysis to the Probability of Majority
Decisions”

@ Suppose there are M voters, each having independent errors, and the
individual error probability is €
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Theory for voting (binary task)

@ Originates from Marquis de Condorcet 1785:

"Essay on the Application of Analysis to the Probability of Majority
Decisions”

@ Suppose there are M voters, each having independent errors, and the
individual error probability is €

@ Majority vote is wrong with probability:

P(majority vote error) Z Ok b (1 — )Mk
k>[5
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M = 11 Classifiers

P(majority vote error) Z CheP(1 — )M+
k> [ 2L

11 classifiers. Individual error probability = 0.3
Probability of voted ensemble error = 0.078225
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Probability
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Number of classifiers in error
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M = 21 Classifiers

P(majority vote error) Z CheP(1 — )M+
k> [ 2L

21 classifiers. Individual error probability = 0.3
Probability of voted ensemble error = 0.02639
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M 7 Classifiers

P(majority vote error) Z ck, — )Mk

kz[%l

0.35 T
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Probability of Ensemble Error
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Ensemble Size (number of classifiers)
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M 7 Classifiers

P(majority vote error) Z CheP(1 — )M+

kz[%l
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Probability of Ensemble Error
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Ensemble Size (number of classifiers)
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Why does this theory not work in practice?

Errors of voters are not independent! )
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Key challenge of ensemble learning

The key challenge of ensemble learning is to obtain models that are:
@ reasonably accurate

@ as independent as possible
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How to achieve independence of models?

Idea 1: Split + Train

@ Randomly split training data into M disjoint groups of instances,
train a separate model on each group

features label

instances
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How to achieve independence of models?

Idea 1: Split + Train

@ Randomly split training data into M disjoint groups of instances,
train a separate model on each group

@ This is not a good idea, since groups get small and the learned
models will have poor prediction quality

features Iamel

instances
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How to achieve independence of models?

Idea 2: Split by features + Train

@ Randomly split training data into M disjoint groups of features, train
a separate model on each group

features label

instances
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How to achieve independence of models?

Idea 2: Split by features + Train
@ Randomly split training data into M disjoint groups of features, train
a separate model on each group
@ This is not a good idea, since not having good features can be even
worse than not having enough instances to train

features label

instances

23 November 2020 15/35
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How to achieve independence of models?

Idea 3: Overlapping subsets of instances + Train

@ Randomly sample M overlapping groups of instances, train a separate
model on each group

features label

instances
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How to achieve independence of models?

Idea 3: Overlapping subsets of instances + Train

@ Randomly sample M overlapping groups of instances, train a separate
model on each group

@ Not too bad, but still smaller training sets

features label

instances

=
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How to achieve independence of models?

Idea 4: Bootstrap-sampled instances + Train

@ Sample with replacement M overlapping groups of instances with
same size as original dataset (bootstrapping), train a separate model
on each group

features label

instances
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Generating a new dataset by Bootstrapping

Bootstrapping:
Sample n items with replacement from the original n training instances

Bootstrap 1

| x1 x2 x3

Original data id y
1 018 o045 08 0
1 |o018 o045 08 0
| a2 ¥ @ 3 |08 03 o021 1
1. | 018 (045 108 0 4 |03 049 018 1
20 | gLt OBz 007 0 5 |o095 o064 063 0
2 | 5=r 22 2= - s |o095 o064 063 0
4 | 03¢ o049 018 1
5 | 095 o064 063 0
6 | 003 05 015 1 A
% Bootstrap 2
id ‘ x1 x2 x3 y
1 [018 o045 038 0
2 | o011 o082 o007 0
3 | o087 03 o021 1
6 | 003 05 015 1
6 | 003 05 015 1
6 | 003 05 015 1
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Generating a new dataset by Bootstrapping

Bootstrapping:
Sample n items with replacement from the original n training instances

Bootstrap 1

Original data @ la 2 o v
— 1 0.18 0.45 0.8 0
1 0.18 0.45 0.8 0
id | a  x x3 y a 3 | o087 03 o021 1
1. | 018 (045 108 0 4 |034 049 018 1
2 | 0aL 082 007 0 5 |o09s o064 063 0
2 | 222 e 22 - 5 | 095 o064 063 0

4 0.34 0.49 0.18 1

5 0.95 0.64 0.63 0

6 0.03 0.59 0.15 il A
g Bootstrap 2

id ‘ x1 x2 x3 y
1 0.18 0.45 0.8 0
. . . .. 2 0.11 0.82 0.07 0
Is it possible that a particular training 3 |08 03 o2 1
. . - B 6 0.03 0.59 0.15 j
instance is not included in the bootstrap 6 [003 o0s0 o015 1
6 0.03 0.59 0.15 1

sample?
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Generating a new dataset by Bootstrapping

Bootstrapping:
Sample n items with replacement from the original n training instances

Bootstrap 1

| x1 x2 x3

Original data id y
= 1 | 018 045 08 0
\fj 1 |o018 045 08 0
id | a  x x3 y 3 o087 03 o021 1
1. | 018 (045 108 0 4 | 034 o049 o018 1
20 | gLt OBz 007 0 5 |o095 o064 063 0
2 | 5=r 22 2= - s |o095 o064 063 0
4 |o03¢ o049 018 1
s |o095 o064 063 0
6 |003 059 015 1 4
% Bootstrap 2
id ‘ x1 x2 x3 y
1 | 018 045 08 0
. . . . 2 o1 o082 o007 0
Is it possible that a particular training 3 [os7 03 o021 1
. . . . 6 |003 o059 015 1
instance is not included in the bootstrap 6 [003 o0s0 o015 1
6 |003 o059 015 1

sample?

It is possible with less than 50% probability J
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:

e Sample with replacement M overlapping groups of instances with the
same size as original dataset
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:
e Sample with replacement M overlapping groups of instances with the

same size as original dataset
e That is, each original instance will have 0, 1, or more copies in such a

group
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:

e Sample with replacement M overlapping groups of instances with the
same size as original dataset

e That is, each original instance will have 0, 1, or more copies in such a
group

o The probability that an instance will not be included in the bootstrap
sample is (%=1)" where n is the size of the dataset.

n
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:

e Sample with replacement M overlapping groups of instances with the
same size as original dataset

e That is, each original instance will have 0, 1, or more copies in such a
group

o The probability that an instance will not be included in the bootstrap

sample is (2=1)" where n is the size of the dataset.

o If the original dataset is big enough (n — o0), then this probability will
tend to 1 ~ 37%.
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:
e Sample with replacement M overlapping groups of instances with the
same size as original dataset
e That is, each original instance will have 0, 1, or more copies in such a
group
o The probability that an instance will not be included in the bootstrap
sample is (“=1)", where n is the size of the dataset.
o If the original dataset is big enough (n — o0), then this probability will
tend to 1 ~ 37%.

e Bagging (Bootstrap AGGregating = BAGG):
Train a model separately on each bootstrapped dataset and then
aggregate the results.
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:
e Sample with replacement M overlapping groups of instances with the
same size as original dataset
e That is, each original instance will have 0, 1, or more copies in such a

gronn

e Th Is it possible that a particular training the bootstrap
san instance is not included in any of the M

o Ift bootstrapped datasets? s probability will
tena

€

e Bagging (Bootstrap AGGregating = BAGG):
Train a model separately on each bootstrapped dataset and then
aggregate the results.
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Bagging: Bootstrap AGGgregating (Breiman 1996)

@ Bootstrap sampling:
e Sample with replacement M overlapping groups of instances with the
same size as original dataset
e That is, each original instance will have 0, 1, or more copies in such a

gronn

e Th Is it possible that a particular training the bootstrap
san instance is not included in any of the M

o Ift bootstrapped datasets? s probability will
tena -/

€

o Bagging |t is possible, but happens less and less

Train a frequently as M grows
aggregat s e

- and then
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P(excluding an instance from the whole ensemble)

0.5
0.4r | . : J
0.3
0.2¢

0.1

Probability of excluding example entirely

0 2 4 6 8 10
Number of classifiers
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Practical Considerations

_ — g:=0:3
I% €e=10.2
o e=0.1 L
- ¢wm Dream!
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10 & 20 30 40 0
Ensemble Size (number of classifiers)
aalt | Single
5 TH decision
2 | t tree
Reality! mdh & | 1
005 N 11 Bagglng
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Number of decision trees
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Bagging

Algorithm Bagging(D, T,<f) — train an ensemble of models from bootstrap

samples.

Input :dataset D; ensemble size T; learning algorithm <.
Output : ensemble of models whose predictions are to be combined by voting
or averaging.
1 fort=1to T do
2 build a bootstrap sample D; from D by sampling | D| data points with

replacement;
3 run &/ on D; to produce a model M;;
4 end

5 return {M;|1<t< T}
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When is bagging useful?

@ Bagging is bad if models are very similar (not independent enough)
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When is bagging useful?

@ Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

SVM?

Very A ] Very
unstable ¥ stable
High variance Low variance
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

KNN? <&

Very ‘ Very
unstable ¥ stable
High variance Low variance
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

Neural nets?

Very (‘ Very
unstable " stable

High variance Low variance
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

() Decision trees? (L.

Very A , Very
unstable ¥ 7 stable
High variance Low variance
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

R——

Very Very
unstable ™ B . 3 ¥ stable
= aggingr =
High variance gg g Low variance
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When is bagging useful?

e Bagging is bad if models are very similar (not independent enough)

@ This happens if the learning algorithm is stable, that is, model does
not usually change much after changing a few training instances

Very A ) Very
unstable — ¥ stable

High variance @ Low variance
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Summary of Bagging

@ Individual models trained on bootstrap-sampled instances, predictions
are aggregated
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Summary of Bagging

@ Individual models trained on bootstrap-sampled instances, predictions
are aggregated
@ Bagging is useful when the algorithm to learn individual models is:
o Relatively accurate

FAST Foundation Ensemble Methods 23 November 2020 24 /35



Summary of Bagging

@ Individual models trained on bootstrap-sampled instances, predictions
are aggregated
@ Bagging is useful when the algorithm to learn individual models is:

o Relatively accurate
o Relatively unstable (high variance)
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Summary of Bagging

@ Individual models trained on bootstrap-sampled instances, predictions
are aggregated
@ Bagging is useful when the algorithm to learn individual models is:

o Relatively accurate
o Relatively unstable (high variance)

@ The aggregated model is then usually better than the original model
trained on full dataset
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Random Forest (Breiman 2000)

@ Random forest: similar to bagged decision trees but different in using
features
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Random Forest (Breiman 2000)

@ Random forest: similar to bagged decision trees but different in using
features

@ In each recursive step of learning decision trees:
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Random Forest (Breiman 2000)

@ Random forest: similar to bagged decision trees but different in using
features

@ In each recursive step of learning decision trees:
o Randomly select F' features out of all P given features
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Random Forest (Breiman 2000)

@ Random forest: similar to bagged decision trees but different in using
features
@ In each recursive step of learning decision trees:

o Randomly select F' features out of all P given features
e Find the best split among these features
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Random Forest (Breiman 2000)

@ Random forest: similar to bagged decision trees but different in using
features

@ In each recursive step of learning decision trees:

o Randomly select F' features out of all P given features
e Find the best split among these features

@ Parameter F is usually fixed to be F' = /P for classification
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Random Forest

Algorithm RandomForest(D, T,d) - train an ensemble of tree models from

bootstrap samples and random subspaces.

Input :dataset D; ensemble size T'; subspace dimension d.
Output :ensemble of tree models whose predictions are to be combined by
voting or averaging.
1 fort=1to T do
2 build a bootstrap sample D from D by sampling |D| data points with

replacement;
3 select d features at random and reduce dimensionality of D accordingly;
4 train a tree model M; on D; without pruning;
5 end

¢ return {M,|[l<r<T}
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Bagging vs Random Forest

Test error

01

0.05

splice — F=60, C=3, N=3175

——

splice - F=60, C=3, N=3175

T

}’—.——

Test error

5 10 15 20 25 30 35 40
Number of decision trees

o 15 20 % % %
Number of decision trees

Bagging (LEFT) vs Random Forests (RIGHT) on the Splice dataset.
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How many trees in a forest?

@ The more the better!
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How many trees in a forest?

@ The more the better!

@ How to know that there are enough?
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How many trees in a forest?

@ The more the better!

@ How to know that there are enough?
e Out-of-bag (OOB) error
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How many trees in a forest?

@ The more the better!

@ How to know that there are enough?
e Out-of-bag (OOB) error

e For each training instance make a prediction using trees that do not
use that instance and evaluate
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How many trees in a forest?

@ The more the better!

@ How to know that there are enough?
e Out-of-bag (OOB) error

e For each training instance make a prediction using trees that do not
use that instance and evaluate
o Stabilisation of OOB error suggests that there are enough trees
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Weighted voting

Model 1 Prediction 1

Model 2 Prediction 2

Which
class has

Input
instance

Aggregated

Prediction 3 the most e
prediction

total
weight

Model 3

Prediction m
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Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets
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Weighted voting

@ Ensembles can be
o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets
o Heterogeneous — individual models are obtained with different
algorithms
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Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets

o Heterogeneous — individual models are obtained with different
algorithms

o Classification can be performed by
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Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets
o Heterogeneous — individual models are obtained with different
algorithms
o Classification can be performed by
e Voting
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Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets
o Heterogeneous — individual models are obtained with different
algorithms
o Classification can be performed by

e Voting
o Weighted voting
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Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets
o Heterogeneous — individual models are obtained with different
algorithms
o Classification can be performed by
e Voting
o Weighted voting

@ Better models should have higher weights

FAST Foundation Ensemble Methods 23 November 2020 30/35



Weighted voting

@ Ensembles can be

o Homogeneous - all individual models are obtained with the same
learning algorithm, on slightly different datasets

o Heterogeneous — individual models are obtained with different
algorithms

Classification can be performed by

e Voting
o Weighted voting

Better models should have higher weights

How to obtain weights?
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data

Training data
ﬁ I

w
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data

Training data

fold 1

fold 2 Il‘"
fold 3 I I
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Obtaining weights

We can estimate the weight
of each model based on CV

on training data

Training data

fold 1
fold 2

fold 3
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Obtaining weights

We can estimate the weight
of each model based on CV

on training data Ir"
-

Training data
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Obtaining weig

We can estimate the weight
of each model based on CV

on training data

->
fold 2
Training data L
fold 2
M2
-
il
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We can estimate the weight
of each model based on CV

on training data 7 Validation
-

Training data L

Validation

fold 2 kdl fold 1
@
fold 3
Validation

//
(-
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Obtaining weights

We can estimate the weight
of each model based on CV

L Validat

on training data [EEE V7 alidlation
- ed 0d3 B¢

fold 2 ' 0.75

Training data L]

fold 1

Validation

//
r - IR > 0.70

Validation

L7
r' o > 0.65
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data

0.75
Training data
- lllr" <=4 (0_7/??2.976 EC(J(?:SSS)B 0.70
0.65
The weight of the

model is proportional
to its average score
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data

Absolute Relative
weight weight

0.61 — 0.61/1.88

Total = 1.88
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Obtaining weights

We can estimate the weight
of each model based on CV
on training data

Absolute Relative
weight weight

0.57 — 0.3

Total = 1.88
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Stacking

@ We can learn the weights in a linear classification task, where the
individual model outputs are treated as features
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@ We can learn the weights in a linear classification task, where the
individual model outputs are treated as features

@ This is known as stacking, because we stack one classifier on top of
many individual classifiers

FAST Foundation Ensemble Methods 23 November 2020 32/35



Prediction 1

Model 2 Prediction 2

Input

i Prediction 3 et LEElC . Aggregated
instance

prediction

Model m Prediction m
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FAST Foundation

0.33
We can train another model

037 < {0 infer these weights for each

o input point separately
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Let's assume we have two
models (M1 and M2)
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We use models M1 and
M2 to predict probability of
class dog for each image
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We use models M1 and The resulting probabilities
M2 to predict probability of will be plotted on the graph
class dog for each image below

M, 1

Training data

1.0
0.8
0.6
0.4
0.2

0.2 0.4 0.6 0.8 1.0 M]
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Stacking

M'Y 4
S 10
sg Both models predict both
§ % 08| probabilities (dog and cat) but
° 3 we only need one, as the other
‘; g 06 one can be easily computed
2L o4 (1 - p(dog))
Q o
£% 02

0.2 0.4 0.6 0.8 1.0 Ml

Probability of class dog
as predicted by M1
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We use models M1 and The resulting probabilities
M2 10 predict probability of will be plotted on the graph
class dog for each image below

M, 1

Training data

Probability of class dog
as predicted by M2
(=)

)

0.2 0.4 0.6 0.8 1.0 M]

Probability of class dog
as predicted by M1
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We use models M1 and The resulting probabilities
M2 to predict probability of will be plotted on the graph
class dog for each image below

Training data

Probability of class dog
as predicted by M2
o
o

0.2 0.4 0.6 0.8 1.0 Ml

Probability of class dog
as predicted by M1
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We use models M1 and We can train a Decision
M2 to predict probability of Tree classifier on top of
class dog for each image these results

M2
Training data §,N 0
=
Iil gz o0 n ®
NE-// 23 oo .
£3
A ~ ic
‘ £ o2 .
0.2 0.4 0.6 08 1.0 Ml

Probability of class dog
as predicted by M1
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We use models M1 and We can train a Decision
M2 to predict probability of Tree classifier on top of
class dog for each image these results

]\43 A

Training data 2 o 10

T=
| #[34 o = mle
m %é 06 .

£3
A~ g

& 0.2 ®

0.2 0.4 0.6 08 1.0 Ml

Probability of class dog
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Let's see if we can interpret
resulting tree (meta-model)
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Let’s see if we can interpret
resulting tree (meta-model)
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If M2 is confident that image is
dog (p > 0.7) go with its choice
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Stacking

Let's see if we can interpret
resulting tree (meta-model)
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If M2 is confident that image is >
dog (p > 0.7) go with its choice S g 10
Unless the M1 is also confident é z 08 ®
that this image is dog (p > 0.7) 23
52 06
277 >
% g 0.4 /—
S8
& 0.2 ®

0.2 0.4 0.6 0.8 1.0 Ml

Probability of class dog
as predicted by M1

FAST Foundation Ensemble Methods 23 November 2020 34 /35



Stacking

Let's see if we can interpret
resulting tree (meta-model)

M,
If M2 is confident that image is .
dog (p > 0.7) go with its choice S g 10
Unless the M1 is also confident 8z os
that this image is dog (p > 0.7) °3
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Training an additional model (meta-model) on top of
ensemble predictions is called stacking

M, 4
The stacking model can ;Z E mle
be any model that you o °
find most appropriate for g
your case
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Training an additional model (meta-model) on top of
ensemble predictions is called stacking
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There is one problem with the setup | have shown you here
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Probability scores obtained on
training data will be overfitted

Training data

There is one problem with the setup | have shown you here
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Probability scores obtained on
training data will be overfitted

Training data

Therefore people use CV-like
approach

There is one problem with the setup | have shown you here

FAST Foundation Ensemble Methods 23 November 2020 34 /35



Data is randomly split into folds

Therefore people use CV-like
approach
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Stacking

Data is randomly split into folds

Training data

fold 1
fold2 |jeud

Validation
data
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as predicted by M2
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fold 3 Probability of class dog
as predicted by M1

While models are trained on training data, the probability
scores are generated based on validation set

FAST Foundation Ensemble Methods 23 November 2020 34 /35



Data is randomly split into folds
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While models are trained on training data, the probability
scores are generated based on validation set
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Stacking

Data is randomly split into folds
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While models are trained on training data, the probability
scores are generated based on validation set
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Data is randomly split into folds
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While models are trained on training data, the probability
scores are generated based on validation set
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What have we learned today?

v/ Bagging
v" Random Forest
v" Weighted Voting
v' Stacking
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