
Machine Learning
Ensemble Methods: Boosting



Topics of previous lectures

X Ingredients of Machine Learning

X Classification Basics, Basic Linear Classifier

X K-Nearest Neighbours and Naive Bayes Classifier

X Linear and Quadratic Discriminant Analysis

X Support Vector Machines (SVM)

X Decision Trees

X Ensemble Methods (Bagging, Weighted Voting, Stacking)

X Regression Methods

X Evaluation and Scoring of Classifiers
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Topics of today’s lecture

Boosting

AdaBoost

Gradient Boosting
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Motivation for Boosting

Suppose we build M models, each with the same error ε, we then use
the majority vote

Is it necessarily the best case if we choose the models to be
independent?

No!

The idea of boosting is that each model corrects the mistakes of the
previous models in the ensemble.
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Intuition behind AdaBoost
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Intuition behind AdaBoost
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In AdaBoost, the
weaknesses of the
previous model are
identified by the high
weights assigned to
missclassified
instances.



AdaBoost (Adaptive Boosting)

Looks for the best model in the form of a weighted sum of weak
models

Learn the first model

How to learn the second such that it would correct the errors of the
first one?

Create a weighted dataset, where the first model would have 50%
accuracy

Then the second model is forced to do better than the first one

Repeat the same with successive models
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AdaBoost (Freund and Schapire 1995)
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t=1 αtht(x))
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Derivation of the key formulas in AdaBoost

AdaBoost can be interpreted as greedily minimizing exponential loss
function at each step L(y, f̂(x)) = exp(−yf̂(x))

After the (t− 1)-th iteration of the boosted classifier is a linear
combination of the weak classifiers

Ht−1(xi) =
t−1∑
j=1

αjhj(xi)

At the t-th iteration we extend it to a better classifier by adding
another weak classifier ht with weight αt:

Ht(xi) = Ht−1(xi) + αtht(xi)

We need to find ht (the classifier) and αt (its weight) that minimizes
the loss

L =
N∑
i=1

e−yiHt(xi)
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Here the only part of the equation depending on ht is the second sum and

L is minimized if we choose ht s.t.
∑

yi 6=ht(xi)
w

(t)
i is minimized (assuming

αt > 0), that is the classifier with the lowest weighted error.
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Derivation of the key formulas in AdaBoost

Now let’s derive the weight αt that minimizes the loss function.

L = e−αt
∑

yi=ht(xi)

w
(t)
i + eαt

∑
yi 6=ht(xi)

w
(t)
i
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since the weighted error of the weak classifier is εt =

∑
yi 6=ht(xi)

w
(t)
i∑N

i=1w
(t)
i

,

then αt =
1
2 log
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1−εt
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Interpretation of AdaBoost

At each iteration of AdaBoost, the weights are updated such that:

half of total weight is on misclassified instances
the other half on correctly classified instances

This ensures that the current ensemble would have weighted error
50%

As weak learner is expected to achieve less than 50% weighted error,
it is also expected to learn something new (that the ensemble does
not ”know” yet)
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AdaBoost for regression (AdaBoost.R2 (Drucker, 1997))

Input : training data set D; ensemble size T ; learning algorithm A
Output : weighted ensemble of models

1 Start with uniform weights w
(1)
i = 1/|D| ∀xi ∈ D

2 For t = 1, . . . , T do

3 Run A on D with weights w
(t)
i to produce a model ht ;

4 Calculate weighted error
let Zt = max

j∈{1,...,|D|}
|yj − ht(xj)|

e
(t)
i =

|yi − ht(xi)|
Zt

εt =
∑|D|
i=1 w

(t)
i e

(t)
i

5 If εt ≥ 1
2 then set t = T − 1 and break

6 Let βt =
εt

1−εt

7 Update the weights w
(t+1)
i = w

(t)
i β

1−e(t)i
t

8 Normalize the weights w
(t+1)
i =

w
(t+1)
i∑|D|

i=1 w
(t+1)
i

9 Return the weighted median of ht(x) for t = 1, . . . , T , using ln( 1
βt
) as

weights
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AdaBoost.R2

The errors in step 4 are usually calculated using the following loss
functions

e
(t)
i =

|yi − ht(xi)|
Zt

(linear)

e
(t)
i =

(yi − ht(xi))2

Z2
t

(square)

e
(t)
i = 1− exp

{
− |yi − ht(xi)|

Zt

}
(exponential)
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Motivation for Gradient Boosting

Suppose in some competition, you are given a set of data points for a
regression task (x1, y1), (x2, y2), . . . , (xn, yn), where (xi, yi) ∈ R2

You need to fit a model f̂(x) in order to minimize the squared loss

Someone gives you a candidate model for f̂(x), which is good, but
not perfect

For example, the suggested model gives the following results

f̂(x1) = 0.3, when y1 = 0.4

f̂(x2) = 1.6, when y2 = 1.5

and so on

Your task is to improve the performance of this model, but

you are not allowed to change anything in the given f̂(x)

you can only add an additional model h to f̂(x), so that the new

prediction is f̂(x) + h(x)

How would you improve the performance of the initial model?
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Motivation for Gradient Boosting

You want to improve the model such that

f̂(x1) + h(x1) = y1

f̂(x2) + h(x2) = y2

. . .

f̂(xn) + h(xn) = yn

FAST Foundation Boosting methods 14 December 2020 15 / 24



Motivation for Gradient Boosting

You want to improve the model such that

f̂(x1) + h(x1) = y1

f̂(x2) + h(x2) = y2

. . .

f̂(xn) + h(xn) = yn

Or equivalently

h(x1) = y1 − f̂(x1)
h(x2) = y2 − f̂(x2)
. . .

h(xn) = yn − f̂(xn)

FAST Foundation Boosting methods 14 December 2020 15 / 24



Motivation for Gradient Boosting

You want to improve the model such that

f̂(x1) + h(x1) = y1

f̂(x2) + h(x2) = y2

. . .

f̂(xn) + h(xn) = yn

Or equivalently

h(x1) = y1 − f̂(x1)
h(x2) = y2 − f̂(x2)
. . .

h(xn) = yn − f̂(xn)

Can any regression tree h help to achieve this goal approximately?

FAST Foundation Boosting methods 14 December 2020 15 / 24



Motivation for Gradient Boosting

You want to improve the model such that

f̂(x1) + h(x1) = y1

f̂(x2) + h(x2) = y2

. . .

f̂(xn) + h(xn) = yn

Or equivalently

h(x1) = y1 − f̂(x1)
h(x2) = y2 − f̂(x2)
. . .

h(xn) = yn − f̂(xn)

Can any regression tree h help to achieve this goal approximately?
We can fit a regression tree to data
(x1, y1 − F (x1)), (x2, y2 − F (x2)), . . . , (xn, yn − F (xn))
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Motivation for Gradient Boosting

The strategy is to use a regression tree to learn the residuals of the
initial model

What if results from the new model f̂(x) + h(x) are still not
satisfactory?

We can add another regression tree

In this way we can improve the predictions from individual models
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Gradient Boosting (J. Friedman, 2000)

It is also an ensemble of weak learners (typically decision trees)

Similar to AdaBoost, in each stage a weak learner is introduced to
compensate the weaknesses of existing weak learners

Here the weaknesses are identified by gradients

It is a generalization of AdaBoost that supports various loss function

It can be used for regression, classification and ranking purposes
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Gradient Boosting for Regression

How is the previous example related to gradient descent?

Let’s formulate the regression problem in terms of the squared loss
function

L(y, f̂(x)) =
(y − f̂(x))2

2

We want to minimize J =
∑n

i L(yi, f̂(xi)) with respect to

f̂(x1), . . . , f̂(xn)

Let’s take derivates with respect to f̂(xi)

∂J

∂f̂(xi)
=
∂L(yi, f̂(xi))

∂f̂(xi)
= f̂(xi)− yi

The residuals are the negative gradients

yi − f̂(xi) = −
∂J

∂f̂(xi)

FAST Foundation Boosting methods 14 December 2020 18 / 24



Gradient Boosting for Regression

How is the previous example related to gradient descent?

Let’s formulate the regression problem in terms of the squared loss
function

L(y, f̂(x)) =
(y − f̂(x))2

2

We want to minimize J =
∑n

i L(yi, f̂(xi)) with respect to

f̂(x1), . . . , f̂(xn)

Let’s take derivates with respect to f̂(xi)

∂J

∂f̂(xi)
=
∂L(yi, f̂(xi))

∂f̂(xi)
= f̂(xi)− yi

The residuals are the negative gradients

yi − f̂(xi) = −
∂J

∂f̂(xi)

FAST Foundation Boosting methods 14 December 2020 18 / 24



Gradient Boosting for Regression

How is the previous example related to gradient descent?

Let’s formulate the regression problem in terms of the squared loss
function

L(y, f̂(x)) =
(y − f̂(x))2

2

We want to minimize J =
∑n

i L(yi, f̂(xi)) with respect to

f̂(x1), . . . , f̂(xn)

Let’s take derivates with respect to f̂(xi)

∂J

∂f̂(xi)
=
∂L(yi, f̂(xi))

∂f̂(xi)
= f̂(xi)− yi

The residuals are the negative gradients

yi − f̂(xi) = −
∂J

∂f̂(xi)

FAST Foundation Boosting methods 14 December 2020 18 / 24



Gradient Boosting for Regression

How is the previous example related to gradient descent?

Let’s formulate the regression problem in terms of the squared loss
function

L(y, f̂(x)) =
(y − f̂(x))2

2

We want to minimize J =
∑n

i L(yi, f̂(xi)) with respect to

f̂(x1), . . . , f̂(xn)

Let’s take derivates with respect to f̂(xi)

∂J

∂f̂(xi)
=
∂L(yi, f̂(xi))

∂f̂(xi)
= f̂(xi)− yi

The residuals are the negative gradients

yi − f̂(xi) = −
∂J

∂f̂(xi)

FAST Foundation Boosting methods 14 December 2020 18 / 24



Gradient Boosting for Regression

How is the previous example related to gradient descent?

Let’s formulate the regression problem in terms of the squared loss
function

L(y, f̂(x)) =
(y − f̂(x))2

2

We want to minimize J =
∑n

i L(yi, f̂(xi)) with respect to

f̂(x1), . . . , f̂(xn)

Let’s take derivates with respect to f̂(xi)

∂J

∂f̂(xi)
=
∂L(yi, f̂(xi))

∂f̂(xi)
= f̂(xi)− yi

The residuals are the negative gradients

yi − f̂(xi) = −
∂J

∂f̂(xi)

FAST Foundation Boosting methods 14 December 2020 18 / 24



Gradient Boosting

FAST Foundation Boosting methods 14 December 2020 19 / 24



Gradient Boosting for Regression (with squared loss)

Input : training data set {(xi, yi)}ni=1; ensemble size M , loss function
L(y, f(x)) = (y − f(x))2, learning rate α
Output : ensemble of models

1 Start with a model with constant value
f̂0(x) = argminf

∑n
i=1 L(yi, f) =

1
n

∑n
i=1 yi

2 For m = 1, . . . ,M do

1 Compute the pseudo-residuals:

rim = −
(∂L(yi, f̂(xi))

∂f̂(xi)

)
f̂(x)=f̂m−1(x)

, i = 1, . . . , n

2 Fit a model (typically a weak learner) hm(x) to pseudo-residuals
{(xi, rim)}ni=1

3 Update the model:

f̂m = f̂m−1(x) + αhm(x)

3 Return f̂M (x).
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Gradient Boosting for Regression (with arbitrary loss)

Input : training data set {(xi, yi)}ni=1; ensemble size M , loss function
L(y, f(x)), learning rate α
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Gradient Boosting for Classification

Suppose we have a multi-class classification problem with K labels

In case of classification, we need to introduce K models in our
gradient boosting machine in each iteration

The probability P(Yi = k|X = xi) is modeled as a softmax of the
final outcomes of the K functions
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Gradient Boosting for Classification

Input : training data set {(xi,yi)}ni=1 (1-hot encoded y); ensemble size
M , loss function L(y, f(x)) = −

∑K
j=1 yj log(f

(j)(x)), learning rate α
Output : ensemble of models

1 Initialize the models with prior probability values f̂ (j)(x) = 1
n

∑n
i=1 yi

for j = 1, . . . ,K

2 For m = 1, . . . ,M do

1 Compute the pseudo-residuals:

r
(j)
im = −

(∂L(yi, f̂(xi))
∂f̂ (j)(xi)

)
, i = 1, . . . , n, j = 1, . . . ,K

2 Fit K regression models (typically a weak learner) h
(j)
m (x) to

pseudo-residuals {(xi, r(j)im)}ni=1

3 Update the models: f̂
(j)
m = f̂

(j)
m−1(x) + αh

(j)
m (x)

4 Apply softmax function to obtain probabilities f̂
(j)
m =

exp(f̂(j)
m )∑K

j=1 exp(f̂
(j)
m )

3 Return f̂M (x). Predict the label with the highest probability.
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What have we learned today?

X Boosting

X AdaBoost

X Gradient Boosting
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